Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado
Mestrado em Engenharia Informática

Solving Colored Nonograms

Luís Pedro Canas Ferreira Mingote
(aluno $\mathrm{n}^{\circ} 29634$)

2° Semestre de 2008/09
29 de Julho de 2009

Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado

Solving Colored Nonograms

Luís Pedro Canas Ferreira Mingote
(aluno $\mathrm{n}^{\circ} 29634$)

Orientador: Prof. Doutor Francisco de Azevedo

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.
2° Semestre de 2008/09
29 de Julho de 2009

Acknowledgements

In advance, I would like to thank my wife Marta and my daughters Margarida and Matile for all their support and patience during the time I spent with this work.

I also would like to thank Prof. Francisco de Azevedo for his time and orientation. I cannot thank him enough for all the patience in reading, understanding and proposing improvements to my writings.

I also would like to thank Prof. Paula Amaral, from the Mathematics Department, for making available CPLEX for testing.

I would also like to thank all my family for their support.

Resumo

Nesta dissertação aprofundamos o estudo da resolução de nonogramas coloridos utilizando Programação Linear Inteira (PLI). As formas conhecidas de resolução deste tipo de problemas são a força-bruta, o método iterativo e PLI.

A nossa aproximação generaliza a utilizada por Robert A. Bosch desenvolvida para, apenas, nonogramas a preto e branco, tornando assim disponível uma solução nova e universal para a resolução de nonogramas utilizando PLI.

Sendo as implementações do método iterativo as que apresentam melhores resultados ao nível do desempenho, desenvolvemos também um método híbrido que combina esta aproximação e PLI.

Estes puzzles têm, muitas vezes, várias soluções. A forma de as encontrar pelo modo iterativo é uma pesquisa em árvore com retrocesso. De forma a encontrar as restantes soluçães na nossa aproximação aplicamos um algoritmo que utiliza um corte binário para excluir soluções já conhecidas.

Para efeito de testes comparativos entre as diversas aproximações ao problema, desenvolvemos um gerador de nonogramas que permite definir a resolução do puzzle, o seu número de cores e a densidade (número de células pintadas vs. resolução).

Finalmente comparamos o desempenho da nossa aproximação para resolver nonogramas coloridos com o da aproximação interativa.

Palavras-chave: Nonograma, pintar-por-números, PLI, Programação Linear Inteira

Abstract

In this thesis we deepen the study of colored nonogram solving using Integer Linear Programming (ILP). The known methods for solving this kind of problems are the depth-first search (brute-force) one, the iterative one and the ILP one.

Our approach generalizes the one used by Robert A. Bosch which was developed for black and white nonograms only, thus providing a new universal solution for solving nonograms using ILP.

Since the iterative implementations are the ones that present better performance results, we also developed a hybrid method that combines this approach and the ILP one.

This puzzles often have more than one solution. The way to find them using the iterative method e to make a tree search with backtracking. In order to find the remaining solutions using our approach, is to apply an algorithm that uses a binary cut to exclude already known solutions.

In order to perform comparative tests between approaches, we developed a nonogram generator that allows us to define the resolution of the puzzle, its number of colors and its density (number of painted cell vs. resolution).

Finally we compare the performance of our approach in solving colored nonograms against the iterative one.

Keywords: Nonogram, paint-by-numbers, ILP, Integer Linear Programming

Contents

1 Introduction 1
1.1 Context 1
1.2 Problem Description 1
1.2.1 Initial problems 1
1.2.2 Nonograms 1
1.2.2.1 Black and White Nonograms 2
1.2.2.2 Colored Nonograms 2
1.3 Scope of work and main contributions 3
1.4 Document structure 4
2 Nonograms 5
2.1 Black and white Nonograms 5
2.1.1 Simple boxes 6
2.1.2 Punctuating 7
2.1.3 Simple spaces 8
2.1.4 Mercury 9
2.1.5 Forcing 9
2.1.6 Glue 10
2.1.7 Joining and splitting 10
2.2 Colored Nonograms 11
2.2.1 Simple boxes 12
2.2.2 Punctuating 14
2.2.3 Simple spaces 14
2.2.4 Mercury 15
2.2.5 Forcing 16
2.2.6 Glue 16
2.2.7 Joining and splitting 17
2.3 Approaches to solving Nonograms 18
2.3.1 Depth-first search (brute-force) 19
2.3.2 Iterative approach 19
2.3.3 Integer Linear Programming approach 21
3 An ILP model for solving Colored Nonograms 23
3.1 Model Description 23
3.1.1 Notation 23
3.1.2 Variables 24
3.1.3 Block constraints 25
3.1.4 Double Coverage Constraints 26
3.1.5 Objective Function 28
3.1.6 Pre-conditions 28
3.2 Instantiation to Black and White Nonograms 29
3.3 Finding Multiple Solutions 29
3.4 Hybrid model 30
4 Results 33
4.1 Pure ILP approach 33
4.2 Nonogram Generator 34
4.3 Hybrid ILP approach 36
5 Conclusions and Future Work 39
A Full Results 41
B Nonogram File Formats 53
B. 1 Bosch based file format 53
B. 2 Olšák file format 58
B. 3 Hett based file format 59

List of Figures

1.1 Black and white nonogram example (unsolved: left, solved: right) 2
1.2 Colored Nonogram Example - "Fall" from [2] 3
2.1 Black and white nonogram example 6
2.2 Example for the method Simple boxes in black and white nonograms 7
2.3 Example for the method Punctuating 8
2.4 Example 1 for the method Simple spaces applied to a black and white nonogram 8
2.5 Example 2 for the method Simple spaces applied to a black and white nonogram 8
2.6 Example for the method Mercury 9
2.7 Example for the method Forcing 10
2.8 Example for the method Glue 10
2.9 Example for the method Joining and splitting applied to a black and white nono- gram 11
2.10 Solving a black and white Nonogram Example 11
2.11 Solving a black and white Nonogram Example - after last (horizontal) iteration 12
2.12 Example 1 for the method Simple boxes 13
2.13 Example for the method Punctuating 14
2.14 Example 1 for the method Simple spaces 14
2.15 Example 2 for the method Simple spaces 15
2.16 Example for the method Mercury 15
2.17 Example for the method Forcing 16
2.18 Example for the method Glue 16
2.19 Example for the method Joining and splitting 17
2.20 Solving a Colored Nonogram Example - "Fall" from [2] 17
2.21 Solving a Colored Nonogram Example - "Fall" from [2] 18
2.22 Solving a Colored Nonogram Example - "Fall" from [2] — After final (hori- zontal) iteration 19
2.23 Depth-first search - all possibilities for a line 20
4.1 Generated nonogram 35

List of Tables

2.1 Experimental Results (in seconds) 22
4.1 Experimental Results (in seconds) 33
4.2 Results of adding equation (4.1) to ILP (in seconds) 34
4.3 Number of solved puzzles by method and dimension 37
4.4 Number of solved puzzles by method and density 37
4.5 Average time to solve a puzzle by dimension 38
4.6 Average time to solve a puzzle by density 38
A. 1 Full Results (in seconds) 42

1. Introduction

1.1 Context

The work hereby presented was developed during the Master Program in Computer Science Engineering (Bologna second cycle), under the original theme "Solving Problems from CSPLib".

1.2 Problem Description

1.2.1 Initial problems

Initially, the purpose of this work was to solve problems from CSPLib (www.csplib.org), a known library of problems for modeling and solving. Given the lack of knowledge about the majority of the existing problems and our interest in exploring and solving new problems, thus broadening our knowledge base, we decided to analyze the following five:

- prob012: Nonograms
- prob020: Darts tournament
- prob022: Bus driver scheduling
- prob032: Maximum density still life
- prob037: Peg solitaire

Although some work was done on problem "prob032 - Maximum density still life", specifically the implementation of the Bucket Elimination algorithm by [11], we decided to deepen the study about problem "prob012 - Nonograms" since it appeared to us that there were approaches that had not been explorer, specially to what concerns colored nonograms.

1.2.2 Nonograms

Nonograms are a popular kind of puzzle whose name varies from country to country, including Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way that contiguous blocks of the same color satisfy the clues, or restrictions, of each line or column.

According to Wikipedia [21], these kind of puzzles were created in 1987 by Non Ishida, a Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the same time and with no relation whatsoever. Soon after, nonograms started appearing in Japanese puzzle magazines and later as electronic games. Today, magazines with nonogram puzzles are published in several countries and are available as electronic games in a variety of platforms.

Ueda e Nagao prove in [19] that this problem is NP-Complete.

1.2.2.1 Black and White Nonograms

In black and white nonograms the clues indicate the sequence of contiguous blocks of cells to be filled (e.g. the clue $3,1,2$ indicates that there is a block of 3 contiguous cells, followed by a sequence of one or more empty cells, then a block of one cell filled, followed by another sequence of one or more empty cells, finally followed by a sequence of two filled cells in that row or column). Figure 1.1 shows an example of a black and white nonogram (unsolved, to the left, solved, to the right).

		5	2	2	2		2				1

Figure 1.1 Black and white nonogram example (unsolved: left, solved: right)
Known approaches to solving black and white nonograms are the depth-first search (bruteforce) one, the iterative one, the ILP one by Bosch [7] and a genetic algorithm by Wouter Wiggers [20].

1.2.2.2 Colored Nonograms

In colored nonograms the clues are composed of pairs that indicate the size and color of each sequence of blocks to be filled. For example, the clue $<(3$, Red $)$, (1, Green), (2,Blue) $>$ indicates that there is a block of 3 contiguous cells of red, followed by a block of one green cell separated or not by a sequence of empty cells, followed by a sequence of two blue cells separated or not from the green block by a sequence of empty cells, in that row or column. The general rule for separating blocks is that if a block is of the same color of the previous one in the respective sequence then they must be separated by at least an empty cell. Otherwise (i.e., the two blocks have different colors), they may have no cells in between, i.e., they may be adjoining blocks. Note that in the particular case of black and white nonograms this means that blocks
in a sequence must always be separated by at least one empty cell. Figure 1.2 represents an example of a colored nonogram with 10 lines by 8 columns with 3 colors.

Figure 1.2 Colored Nonogram Example - "Fall" from [2]

1.3 Scope of work and main contributions

Within the scope of this work, colored nonograms were studied in order to develop an Integer Linear Programming model for solving them. This model is based on the one provided by Bosch in [7] for black and white nonograms and generalizes it so it can solve both black and white and colored puzzles. Bosch's file format was also adapted to colored nonograms and in our implementation also supports lines with no clues.

Since the iterative approach is the one that presents the best results, according to Jan Wolter in [23] and according to the tests we performed (shown ahead), we decided to build an hybrid model that integrates both approaches.

In order to compare results of both our models and the iterative one, we built a nonogram generator that can generate puzzles given a resolution (width \times height), a number of colors and a density (global or by color).

This allowed us to broaden the sample set used in comparing the different approaches to
solving nonograms thus providing a deeper comparison between them with tests over several instances of different dimensions and difficulty.

Our ILP approach was also enhanced in order to obtain more solutions to the same problem, if applicable. This enhancement was accomplished by simplifying a known algorithm that finds multiple solutions in order to make it more efficient to this specific problem.

In summary, the main contributions of this work are:

- An ILP model for solving colored nonograms;
- A nonogram instance generator;
- An hybrid implementation between the iterative approach and our ILP approach for colored nonogram solving.
- A more systematic study of the different nonogram solving approaches
- An adaptation of an algorithm that obtains multiple solutions to an ILP problem, with a simplification that makes it more efficient to specific problems

1.4 Document structure

This document is organized in the following way: In Chapter 2 nonograms (both black and white and colored) are described in full and the best known approaches are detailed.

In Chapter 3 the ILP model we developed to solve colored nonograms is described, including a demonstration that this model corresponds to the one by Bosch in [7] for black and white nonograms. It is also shown how to apply a simple technique in order to find additional solutions in case the first solution obtained for a puzzle is not unique. A description of the hybrid approach between the iterative approach and the hereby presented ILP model is also described.

In Chapter 4 results from the presented solutions are compared to its iterative counterpart. A description of the nonogram generator is also presented.

In Chapter 5 the results of the previous chapter are analyzed and the conclusions of this work are presented. We also suggest some future work based on the one presented here.

In appendix A a table with the result of all tests is show.
in appendix B an example of each file format used is shown.

2. Nonograms

In the previous chapter a brief description of nonograms was presented. In this one a more detailed explanation about nonograms is shown.

Nonograms are a popular kind of puzzle whose name varies from country to country, including Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way that contiguous blocks of the same color satisfy the clues, or restrictions, of each line or column.

According to Wikipedia [21], these kind of puzzles were created in 1987 by Non Ishida, a Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the same time and with no relation whatsoever. Soon after, nonograms started appearing in Japanese puzzle magazines and later as electronic games. Today, magazines with nonogram puzzles are published in several countries and are available as electronic games in a variety of platforms.

The most common nonograms are black and white, but they exist also in colors. In fact, black and white nonograms are a specialization of colored nonograms, i.e., are two colored nonograms.

Also there is a different kind of nonogram - called triddlers - in which cells are triangles. In this kind of puzzles we have three sets of clues instead of only two. These puzzles can also exist in multiple colors.

Ueda e Nagao prove in [19] that the nonogram problem is NP-Complete.

2.1 Black and white Nonograms

In black and white nonograms the clues indicate the sequence of contiguous blocks of cells to be filled (e.g. the clue $3,1,2$ indicates that there is a block of 3 contiguous cells, followed by a sequence of one or more empty cells, then a block of one cell filled, followed by another sequence of one or more empty cells, finally followed by a sequence of two filled cells in that row or column). Figure 1.1 shows an example of a black and white nonogram (unsolved, to the left, solved, to the right).

According to Wikipedia [21], in order to solve this kind of puzzle it is necessary to determine which cells will be filled (black) and which will be empty (white). Determining which cells will be empty is as important as determining which will be filled because the former will help delimiting the solutions for the blocks of each line or column ${ }^{1}$.

Simpler puzzles, like the one shown in figure 2.10, can usually be solved by applying the following methods to each line at a time.

[^0]

Figure 2.1 Black and white nonogram example

2.1.1 Simple boxes

At the beginning of the solution, when there are no filled cells, for each block $b_{i} \in\left\{b_{1}, \ldots, b_{B}\right\}$ in each row, the space available $S\left(b_{i}\right)$ for it is determined, assuming that the remaining blocks are moved closer to the extremities of the grid as possible (previous blocks to the left and subsequent block to the right). b_{i} represents a set of filled cells in sequence (vector). The value for $S\left(b_{i}\right)$ can be calculated using equation 2.5 , where L represents the size of the line, B represents the number of blocks on the line and $T\left(b_{i}\right)$ represents the size of b_{i}.

$$
\begin{equation*}
S\left(b_{i}\right)=L-B+1-\sum_{k \neq i}^{B} T\left(b_{k}\right) \tag{2.1}
\end{equation*}
$$

It is also possible to know for each block what is the potential first cell that it can occupy through equation 2.7, where $b_{i}[1]$ is block's b_{i} first cell position in the grid.

$$
b_{i}[1]= \begin{cases}1 & ; \mathrm{i}=1 \tag{2.2}\\ \left.b_{i-1}[1]+T\left(b_{i-1}\right)+1\right) & ; \mathrm{i}>1\end{cases}
$$

Within this set of cells it is possible to determine which subset is actually filled by analyzing the extremities of the solution, i.e., sliding the block as far to the left as possible and then as far to the right as possible and checking which cells are common to both solutions. In this way, equation 2.3 gives the size of this sub-block, where $T\left(s_{i}\right)$ is the size of the sub-block s_{i} that can
be determined for block b_{i}.

$$
\begin{equation*}
T\left(s_{i}\right)=2 T\left(b_{i}\right)-S\left(b_{i}\right) \tag{2.3}
\end{equation*}
$$

In the same way, it is possible to obtain the first cell (consequently the remaining) of this sub-block through equation 2.4 , where $s_{i}[1]$ is the position of the first cell of sub-block s_{i}.

$$
\begin{equation*}
s_{i}[1]=b_{i}[1]+S\left(b_{i}\right)-T\left(b_{i}\right) \quad ; \quad T\left(s_{i}\right)>0 \tag{2.4}
\end{equation*}
$$

Figure 2.2 Example for the method Simple boxes in black and white nonograms

As an example, for the 10th line of the puzzle shown in figure $2.1, L=10, B=2, T\left(b_{1}\right)=7$ and $T\left(b_{2}\right)=1$. Therefore the space available for the first block is $S\left(b_{1}\right)=10-2+1-1=8$ and $S\left(b_{2}\right)=10-2+1-7=2$. The leftmost indexes each can occupy are $b_{1}[1]=1$ and $b_{2}[1]=$ $1+7+1=9$.

As for the sub-blocks of cells that can be filled at this point, $T\left(s_{1}\right)=2 \times 7-8=6$ and $T\left(s_{2}\right)=2 \times 1-2=0$, i.e., it is not possible to fill, for now, any cell in respect to the second block, but it is possible to fill six cells with respect to the first one. It is yet to determine the starting cell of the first and second sub-blocks: $s_{1}[1]=1+8-7=2$, i.e., it is possible to fill, at this point, cells 2 through 7 of that line.

Figure 2.2, from line 10 of the puzzle shown in figure 2.1, exemplifies this method for a size 10 line with with two blocks of sizes 7 and 1.

2.1.2 Punctuating

In order to solve the puzzle it is also very important to enclose with empty cells the extremities of each completed block, immediately, as described in the method Simple spaces. Precise punctuating usually leads to more Forcing and can be vital to finishing the puzzle.

Figure 2.3 exemplifies this method for line 9 of puzzle shown in figure 2.1.

Figure 2.3 Example for the method Punctuating

2.1.3 Simple spaces

The purpose of this method is to find cells that can not be filled by any block due to the constraints imposed by filled cells. For example, a block that is already complete may have at least an empty cell to its left and at least another one to its right, unless it is adjacent to the beginning or the end of the line.

Figure 2.4 from column 8 of the puzzle shown in figure 2.1 shows an example of this method.

Figure 2.4 Example 1 for the method Simple spaces applied to a black and white nonogram
In figure 2.5, based on one from Wikipedia, a more illustrative example of this method is shown.

Figure 2.5 Example 2 for the method Simple spaces applied to a black and white nonogram
First, clue 1 is complete which means that there will be an empty cell to its left and another to its right (Punctuating). Then, from clue 3 it is possible to conclude that its block can only
expand between the second and the sixth cell because it has to include the fourth cell. This means that cells 1 and 7 will be empty.

2.1.4 Mercury

Mercury is a special case of Simple spaces. The name comes from the way mercury pulls back from the sides of a container.

If there is a filled cell on a line that is at the same distance from the border as the size of the first block, then the first cell has to be empty. This is true because the first block would not fit to the left of the filled cell. It will have to spread through that cell leaving the first cell behind. Besides, when the cell is in reality a set with cells more to the right, there will be more spaces at the beginning of the line, determined by applying this method several times.

In figure 2.6, from Wikipedia, an example of this method is shown.

Figure 2.6 Example for the method Mercury

2.1.5 Forcing

In this method the importance of empty cells is demonstrated. En empty cell in the middle of an incomplete line can force a block to complete itself to one of the sides of the empty cell.

In figure 2.7, from line 8 of the puzzle shown in figure 2.1, an example of this method is shown.

The first block (3) will have to be to the left of the first cell already marked as empty. The empty one between the two cells already marked as empty cannot belong to any block from that line which means it has to be empty. Finally, the second block will have to occupy a subset of the last three cells of the line. Applying method Simple boxes to both blocks turns out to fill cells 2, 3 and 9 .

Figure 2.7 Example for the method Forcing

2.1.6 Glue

In this method a full cell at the beginning (or the end) of the possible space for a block forces the completion of that block to the empty side. In the same way, an empty cell in the middle of the possible space for a block can condition the placement of that block's cells.

In figure 2.8, from column 1 of the puzzle shown in figure 2.1, an example of this method is shown.

Figure 2.8 Example for the method Glue
In this case, the filled cell in position 1 indicates that the size 5 block has to fill cells 1 through 5. Since the block becomes complete, we mark cell 6 of that column as empty through method punctuating.

2.1.7 Joining and splitting

Filled cells nearby one another can be united or separated according with the number and size of that line's blocks. In this case the whole line has to be analyzed together with the information available for every block.

In figure 2.9, from Wikipedia, an example of this method is shown.
The clue of 5 will join the first two blocks into one large block because a space would produce a block of only 4 cells. Cell 7 will have to be empty, otherwise a 3 size block would form which is not indicated for that line. In this case, the size 2 blocks will also complete, however that is a result of applying the Glue method described earlier.

Using these methods we can easily solve these more simple puzzles. Figures 2.10(a) through

Figure 2.9 Example for the method Joining and splitting applied to a black and white nonogram
2.11 show the two horizontal iterations and the vertical one made in order to solve the puzzle shown in figure 2.1.

(a) After first horizontal iteration

(b) After first vertical iteration

Figure 2.10 Solving a black and white Nonogram Example

2.2 Colored Nonograms

In colored nonograms the clues are composed of pairs that indicate the size and color of each sequence of blocks to be filled. For example, the clue $<(3$, Red $)$, (1, Green), (2,Blue) $>$ indicates that there is a block of 3 contiguous cells of red, followed by a block of one green cell separated or not by a sequence of empty cells, followed by a sequence of two blue cells separated or not from the green block by a sequence of empty cells, in that row or column. The general rule for separating blocks is that if a block is of the same color of the previous one in the respective sequence then they must be separated by at least an empty cell. Otherwise (i.e., the two blocks have different colors), they may have no cells in between, i.e., they may be adjoining blocks. Note that in the particular case of black and white nonograms this means that blocks in a sequence must always be separated by at least one empty cell. Figure 1.2 represents an

Figure 2.11 Solving a black and white Nonogram Example - after last (horizontal) iteration
example of a colored nonogram with 10 lines by 8 columns with 3 colors.
In the same way as black and white nonograms, in order to solve this kind of puzzle it is necessary to determine which cells will be filled (colored) and which will be empty (white). Determining which cells will be empty is as important as determining which will be filled because the former will help delimiting the solutions for the blocks of each line or column.

As referred earlier, black and white nonograms are a special case of colored nonograms (are two colored nonograms). In that way, the same methods, with some nuances, can be applied to colored nonograms, each line at a time, in order to solve them.

These methods are explained again, but now applied to colored nonograms.

2.2.1 Simple boxes

At the beginning of the solution, when there are no filled cells, for each block $b_{i} \in\left\{b_{1}, \ldots, b_{B}\right\}$ in each row, the space available $S\left(b_{i}\right)$ for it is determined, assuming that the remaining blocks are moved closer to the extremities of the grid as possible (previous blocks to the left and subsequent block to the right). b_{i} represents a set of filled cells in sequence (vector). The value for $S\left(b_{i}\right)$ can be calculated using equation 2.5 , where L represents the size of the line, P represents the number of pairs of contiguous blocks of the same color on the line and $T\left(b_{i}\right)$ represents the size of b_{i}.

$$
\begin{equation*}
S\left(b_{i}\right)=L-P-\sum_{k \neq i}^{B} T\left(b_{k}\right) \tag{2.5}
\end{equation*}
$$

For black and white nonograms equation 2.5 becomes equation 2.1 where B represents the number of block on the line.

It is also possible to know for each block what is the potential first cell that it can occupy through equation 2.7, where $b_{i}[1]$ is block's b_{i} first cell position in the grid and f is a function that returns 1 if the blocks are of the same color and 0 otherwise (see equation 2.6 where $C_{b_{i}}$ is the color of block i).

$$
\begin{gather*}
f\left(b_{i}, b_{j}\right)=\left\{\begin{array}{cc}
0 & ; C_{b_{i}} \neq C_{b_{j}} \\
1 & ; C_{b_{i}}=C_{b_{j}}
\end{array}\right. \tag{2.6}\\
b_{i}[1]= \begin{cases}1 & ; \mathrm{i}=1 \\
b_{i-1}[1]+T\left(b_{i-1}\right)+f\left(b_{i}, b_{i-1}\right) & ; \mathrm{i}>1\end{cases} \tag{2.7}
\end{gather*}
$$

For black and white nonograms f always returns 1 and equation 2.7 becomes equation 2.2.
Within this set of cells it is possible to determine which subset is actually filled by analyzing the extremities of the solution, i.e., sliding the block as far to the left as possible and then as far to the right as possible and checking which cells are common to both solutions. In this way, equation 2.8 gives the size of this sub-block, where $T\left(s_{i}\right)$ is the size of the sub-block s_{i} that can be determined for block b_{i}.

$$
\begin{equation*}
T\left(s_{i}\right)=2 T\left(b_{i}\right)-S\left(b_{i}\right) \tag{2.8}
\end{equation*}
$$

In the same way, it is possible to obtain the first cell (consequently the remaining) of this sub-block through equation 2.9 , where $s_{i}[1]$ is the position of the first cell of sub-block s_{i}.

$$
\begin{equation*}
s_{i}[1]=b_{i}[1]+S\left(b_{i}\right)-T\left(b_{i}\right) \quad ; \quad T\left(s_{i}\right)>0 \tag{2.9}
\end{equation*}
$$

Figure 2.12 Example 1 for the method Simple boxes
As an example, for the fourth line of the puzzle shown in figure $1.2, L=8, P=0, B=4$, $T\left(b_{1}\right)=3, T\left(b_{2}\right)=2, T\left(b_{3}\right)=1$ and $T\left(b_{4}\right)=1$. Therefore the space available for the first block is $S\left(b_{1}\right)=8-0-4=4, S\left(b_{2}\right)=8-0-5=3, S\left(b_{3}\right)=8-0-6=2$ and $S\left(b_{4}\right)=8-0-6=2$. The leftmost indexes each can occupy are $b_{1}[1]=1, b_{2}[1]=1+3+0=4, b_{3}[1]=4+2+0=6$ and $b_{4}[1]=6+1+0=7$.

As for the sub-blocks of cells that can be filled at this point, $T\left(s_{1}\right)=2 \times 3-4=2, T\left(s_{2}\right)=$ $2 \times 2-3=1, T\left(s_{3}\right)=2 \times 1-2=0$ and $T\left(s_{4}\right)=2 \times 1-2=0$, i.e., it is not possible to fill, for now,
any cell in respect to the third and fourth blocks, but it is possible to fill two cells with respect to the first one and one cell with respect to the second one. It is yet to determine the starting cell of the first and second sub-blocks: $s_{1}[1]=1+4-3=2$ and $s_{2}[1]=4+3-2=5$., i.e., it is possible to fill, at this point, cells 2,3 and 5 of that line.

2.2.2 Punctuating

In order to solve the puzzle it is also very important to enclose with empty cells the extremities of each completed block that is the same color as the adjacent one, immediately, as described in the method Simple spaces. Precise punctuating usually leads to more Forcing and can be vital to finishing the puzzle.

Figure 2.13 exemplifies this method for line line 6 of puzzle shown in figure 1.2.

Figure 2.13 Example for the method Punctuating

2.2.3 Simple spaces

The purpose of this method is to find cells that can not be filled by any block due to the constraints imposed by filled cells. For example, a block that is already complete may have at least an empty cell to its left and at least another one to its right, unless it is adjacent to the beginning or the end of the line.

Figure 2.14 from line 2 of the puzzle shown in figure 1.2 shows an example of this method.

Figure 2.14 Example 1 for the method Simple spaces

In figure 2.15, based on one from Wikipedia, a more illustrative example of this method is shown.

Figure 2.15 Example 2 for the method Simple spaces

First, clue 1 is complete which means that there will be an empty cell to its left and another to its right (Punctuating). Then, from clue 3 it is possible to conclude that its block can only expand between the second and the sixth cell because it has to include the fourth cell. This means that cells 1 and 7 will be empty.

2.2.4 Mercury

Mercury is a special case of Simple spaces. The name comes from the way mercury pulls back from the sides of a container.

If there is a filled cell on a line that is at the same distance from the border as the size of the first block, then the first cell has to be empty. This is true because the first block would not fit to the left of the filled cell. It will have to spread through that cell leaving the first cell behind. Besides, when the cell is in reality a set with cells more to the right, there will be more spaces at the beginning of the line, determined by applying this method several times.

In figure 2.16, from line 1 of the puzzle shown in figure 1.2, an example of this method is shown.

Figure 2.16 Example for the method Mercury

2.2.5 Forcing

In this method the importance of empty cells is demonstrated. En empty cell in the middle of an incomplete line can force a block to complete itself to one of the sides of the empty cell.

In figure 2.17, base on the one from Wikipedia, an example of this method is shown.

Figure 2.17 Example for the method Forcing
The first block (3) will have to be to the left of the first cell already marked as empty. The empty one between the two cells already marked as empty cannot belong to any block from that line which means it has to be empty. Finally, the second block will have to occupy a subset of the last three cells of the line. Applying method Simple boxes to both blocks turns out to fill cells 2, 3 and 9 .

2.2.6 Glue

In this method a full cell at the beginning (or the end) of the possible space for a block forces the completion of that block to the empty side. In the same way, an empty cell in the middle of the possible space for a block can condition the placement of that block's cells.

In figure 2.18, from column 5 of the puzzle shown in figure 1.2, an example of this method is shown.

Figure 2.18 Example for the method Glue
In this case, filled brown cell in position 4 preceded by filled green cell in position 3 indicates that the size 7 brown block has to fill cells 5 through 10 .

2.2.7 Joining and splitting

Filled cells nearby one another can be united or separated according with the number and size of that line's blocks. In this case the whole line has to be analyzed together with the information available for every block.

In figure 2.19 , from column 2 of the puzzle shown in figure 1.2, an example of this method is shown.

Figure 2.19 Example for the method Joining and splitting
The clue to the size 3 green block will make that the two green cells unite because a space in cell 2 would divide the first block in two.

Using these methods one can easily solve these more simple puzzles. Figures 2.20(a) through 2.22 show the three horizontal iterations and the two vertical ones made in order to solve the puzzle shown in figure 1.2.

(a) After first horizontal iteration

(b) After first vertical iteration

Figure 2.20 Solving a Colored Nonogram Example - "Fall" from [2]

Figure 2.21 Solving a Colored Nonogram Example - "Fall" from [2]

2.3 Approaches to solving Nonograms

In the previous section we showed how simpler puzzles can be solved by looking at each line at a time and applying one or more methods to color cells or mark them as spaces. For more complex puzzles we can reach a state where we can not fill more unknown cells by applying those methods. At that point we have to try and guess a value (color or space) for a cell and then reapply the aforementioned methods to try to reach a solution or a contradiction. Eventually we will reach another state where another guess must be made to continue to try to solve the puzzle, and so on. If a contradiction is reached, then the value we chose for a determined cell is wrong. In black and white puzzles this means that the cell will have the opposite value (empty if the chosen value was filled, filled otherwise), but in colored nonograms another color can be chosen for that cell. These more complex puzzles are usually difficult to solve by a human.

This is where computer based approaches can be useful.
Known approaches for solving nonograms are the depth-first search (brute-force), the iterative approach and the ILP approach. A comparison between a genetic algorithm and the depth-first search algorithm, by Wouter Wiggers [20], was also found. As mentioned in the article, the genetic algorithm not always reaches a solution, however it reaches a near solution very quickly.

Figure 2.22 Solving a Colored Nonogram Example - "Fall" from [2] — After final (horizontal) iteration

2.3.1 Depth-first search (brute-force)

This approach tries all possible combinations for the set of blocks of each line. For example, for a size 10 line, belonging to a black and white nonogram, with two blocks of sizes 5 and 1, we would have 10 possibilities only for that line, as shown in figure 2.23.

An optimization of this algorithm is to begin with the lines that have fewer possibilities. However, if we want to find all solutions then all possibilities must be explored.

The following are implementations of this approach:

- ECLIPSE program by Joachim Schimpf [14]
- P-99: Ninety-Nine Prolog Problems [10]
- Colin Barker's Home Page - LPA Win-Prolog Goodies [6]

These implementations only work for black and white nonograms.

2.3.2 Iterative approach

The iterative technique consists in determining, for every line, cyclically, which cells can be considered filled and which cells can be considered empty, in accordance to the information available at the moment, until a solution is reached or no more cells can be determined.

To find this information an algorithm is applied to each line at a time. This algorithm is called a line-solver. A line-solver is an algorithm that given a single line (row or column), and the state of that line so far, tries to figure out what additional cells can be marked.

Figure 2.23 Depth-first search — all possibilities for a line

When the successive application of the line-solver stops contributing to the puzzle's resolution, the search for contradictions can help.

This method includes:

1. Forcing an unknown cell to be empty or full;
2. Reapply the methods mentioned in order to find a solution;
3. If a contradiction is found then the value chosen for that cell was not the correct on and another cell must be tried, or another value must be tried for that cell (chronologic backtracking).

The problem to this method is the choice of a cell to try a contradiction, i.e., having an heuristic to find the best cells to try a value. Besides, while trying a cell for a contradiction another situation may arise in that another try to find a contradiction must take place, and so forth.

Usually, the best cells to initiate a contradiction try are the following:

- Cells that have many filled neighbors;
- Cells near the border or nearby sets of empty cells;
- Cells that are between lines that consist of more empty cells.

Steven Simpson, in his site [16], describes his algorithm for the resolution of nonograms. As mentioned above, the algorithm tries to solve, or partially solve, a line for each iteration. The order in which lines are tried to be solved is defined by the value of equation 2.10, Where
B is the number of blocks of that line, L is the size of the line and $T\left(b_{1}\right)$ to $T\left(b_{B}\right)$ are the sizes of each block. When non-negative, the result is the number of filled cells that can be determined from an empty line. A negative value indicates a shortfall of pre-determined cells. Note that when $B=1$ and $T\left(b_{i}\right)=L$ then $I=L$ and this is the maximum value.

$$
\begin{equation*}
I=(B+1) \sum_{i=1}^{B} T\left(b_{i}\right)+B(B-L-1) \tag{2.10}
\end{equation*}
$$

Exceptionally, if $B=0$ (empty line) then $I=L$.
After a line is chosen a line-solver, or a sequence of line-solvers, are applied to it in order to fill as many cells as possible. The line-solvers are applied to the line in a predefined rank order, i.e, higher ranked line-solvers are only applied after lower ranked ones don't reveal more cells. There are four well-known line-solvers: fast, complete, olsak [13] and fcomp. The first gets most of the available information available; the second gets everything logically deductible, but is very inefficient; the third is a variation of the first one, but is a little more exhaustive and gets all the information; the fourth is a revised version of the second one, but is significantly more efficient.

In [23], Jan Wolter compares several nonogram solvers in which the best three (Wolter's pbnsolve [22], Simpson's nonogram [15] and Olšák's grid [13]) use one or more of these linesolvers. Simpson' is the only that does not solve colored nonograms.

2.3.3 Integer Linear Programming approach

Robert A. Bosch [7] presented in 2001 a solution based on Integer Linear Programming as well as the code that converts the definition of a puzzle in a program that can be used with CPLEX [3] to solve the puzzle.

The mentioned program only works for puzzles that have clues for all the lines.
Since this approach only solves black and white nonograms we proposed to develop an ILP model that solves colored nonograms.

The performance results of our approach compared to an adaptation for colored nonograms of the depth-first search provided by Hett [10], an adapted version of the optimized depth-first search approach also by Hett and Olšák's grid are shown in table 2.1.

The times were measured on a 2.4 GHz Intel ${ }^{\odot}$ Centrino $^{\circledR}{ }^{\circledR}$ vPro $^{\mathrm{TM}}$ with 2 GB of RAM running Microsoft ${ }^{\ominus}$ Windows ${ }^{\ominus}$. The Prolog program was run in ECLiPSe [1] and the generated ILP problems were run on SCIP [4]. Results are shown in table 4.1, where NPC stands for "Number of Painted Cells".

Given the good performance of the iterative approaches we also proposed to develop a hybrid model between this approach and the ILP one.

The ILP approach presented here starts from scratch with an empty grid and, in general, could not improve the Iterative method for the available tests, although already presented similar results using a non commercial tool.

Table 2.1 Experimental Results (in seconds)

Puzzle	$\mathrm{R} \times \mathrm{C} \times$ Col	NPC	Brute-force (Prolog)	Brute-force opt (Prolog)	Iterative	ILP
Fall	10×8×3	47	$1,050.70$	0.03	0.07	0.03
Fish	$16 \times 16 \times 2$	164	(too long)	0.08	0.07	0.21
AtoZ	$16 \times 16 \times 2$	50	(too long)	0.92	0.10	23.04
Time	$35 \times 30 \times 5$	520	(too long)	(out of memory)	0.21	3.51

Our initial idea when developing the ILP model, in addition to the new theoretical results, was to use it together with the Iterative method, which we knew was efficient to quickly fill many cells of the grid using simple inferences on the rows and columns clues. That is precisely what we proposed to develop, by applying the ILP model only after the Iterative technique already filled many cells, thus reducing a lot the model complexity by converting many variables to constants.

Both Simpson and Wolter have references to other nonogram solvers in [17] and [23], respectively.

3. An ILP model for solving Colored Nonograms

In the previous chapter we verified that no ILP model for solving colored nonograms exists. In this chapter we describe the model we developed for this purpose.

3.1 Model Description

As in [7], our approach is to think of a colored nonogram as a problem comprised of two interlocking tiling problems: one involving the placement of the row blocks, and the other involving the placement of the column blocks. If a cell is painted (it can be assumed that unpainted cells are painted white) then it must be covered by both a row block and a column block; if it is painted white (not painted) then it must be left uncovered by the row blocks and the column blocks.

3.1.1 Notation

The notation used here is similar to the one used by Bosch in [7], as follows.
$m=$ the number of rows,
$n=$ the number of columns,
$o=$ the number of colors excluding white (We use a sequence of natural numbers to identify colors, starting at $1(1,2, \ldots, o)$.),
$b_{i}^{r}=$ the number of blocks in row $i, 1 \leq i \leq m$,
$b_{j}^{c}=$ the number of blocks in column $j, 1 \leq j \leq n$,
$s_{i, 1}^{r}, s_{i, 2}^{r}, \ldots, s_{i, b_{i}^{r}}^{r}=$ the block-size sequence for row i,
$s_{j, 1}^{c}, s_{j, 2}^{c}, \ldots, s_{j, b_{j}^{c}}^{c}=$ the block-size sequence for column j,
$c_{i, 1}^{r}, c_{i, 2}^{r}, \ldots, c_{i, b_{i}^{r}}^{r}=$ the block-color sequence for row i,
$c_{j, 1}^{c}, c_{j, 2}^{c}, \ldots, c_{j, b_{j}^{c}}^{c}=$ the block-color sequence for column j.
In addition, let
$e_{i, t}^{r}=$ the smallest value of j such that row i 's $t^{\text {th }}$ block can be placed in row i with its leftmost pixel occupying cell j,
$l_{i, t}^{r}=$ the largest value of j such that row i 's $t^{t h}$ block can be placed in row i with its leftmost pixel occupying cell j,
$e_{j, t}^{c}=$ the smallest value of i such that column j 's $t^{t h}$ block can be placed in column j with its topmost pixel occupying cell i,
$l_{i, t}^{c}=$ the largest value of i such that column j 's $t^{\text {th }}$ block can be placed in column j with its topmost pixel occupying cell i.

These are constants valid for the empty puzzle. (The letters " e " and " l " stand for "earliest" and "latest"). In our example puzzle, the second row's first block must be placed so that its leftmost pixel occupies cell 1 or 2, the second block must be placed so that its leftmost pixel occupies cell 5 or 6 , and the third block must be placed so that its leftmost pixel occupies cell 6 or 7. In other words

$$
e_{2,1}^{r}=1, l_{2,1}^{r}=2, e_{2,2}^{r}=5, l_{2,2}^{r}=6, e_{2,3}^{r}=6 \quad \text { and } \quad l_{2,3}^{r}=7 .
$$

These values are obtained by iteratively placing the blocks in their leftmost or topmost possible cells and then placing them in their rightmost or bottommost possible cells. In our example, the first block's first cell is 1 and, since the first block's size is 4 and the color of both blocks is different, the second block's first possible cell is 5. Then, since the color of the third block is also different from the second one and the size of the second block is 1 , the third block's first possible cell is 6 . Now, the third block is pushed to its rightmost cell (7) and one finds out that the second block's last possible cell is 6 and the first block's last possible cell is 2.

Note that the rules for determining these values are the same for colored or black and white nonograms. Of course, in black and white puzzles all the blocks are of the same color, which means they have to be separated by at least one empty cell.

3.1.2 Variables

As in the approach by Bosch in [7], in our approach there are three sets of variables. One set specifies the color of each cell:

$$
\forall_{1 \leq i \leq m, 1 \leq j \leq n} \quad z_{i, j}= \begin{cases}1 \leq c \leq o & \text { if row } i \text { 's } j^{\text {th }} \text { cell is painted } \tag{3.1}\\ 0 & \text { with color } c \\ 0 \text { if row } i \text { 's } j^{\text {th }} \text { cell is not } \\ & \text { painted }\end{cases}
$$

The other two sets of variables are concerned with placements of the row and column blocks.

$$
\forall_{1 \leq i \leq m, 1 \leq t \leq b_{i}^{r}, e_{i, t}^{r} \leq j \leq l_{i, t}^{r}} \quad y_{i, t, j}= \begin{cases} & \begin{array}{l}
\text { if row } i \prime \mathrm{~s} t^{t h} \text { block is placed } \\
1 \\
\text { in row } i \text { with its leftmost pixel } \\
\text { occupying cell } j \\
\text {;if not } \tag{3.2}
\end{array}\end{cases}
$$

$$
\forall_{1 \leq j \leq n, 1 \leq t \leq b_{j,}^{c}, e_{j, t}^{c} \leq i \leq l_{j, t}^{c}}^{c} \quad x_{j, t, i}= \begin{cases} & \begin{array}{l}
\text { if column } j ’ \mathrm{~s} t^{t h} \text { block is } \\
1
\end{array} \tag{3.3}\\
\begin{array}{l}
\text { placed in column } j \text { with its } \\
\text { topmost pixel occupying cell }
\end{array} \\
0 & \text { i if not }\end{cases}
$$

3.1.3 Block constraints

To ensure that row i 's $t^{\text {th }}$ block appears in row i exactly once, the following imposes

$$
\begin{equation*}
\forall_{1 \leq i \leq m, 1 \leq t \leq b_{i}^{r}} \sum_{j=e_{i, t}^{r}}^{l_{i, t}^{r}} y_{i, t, j}=1 \tag{3.4}
\end{equation*}
$$

For line 2 of our example we have

$$
\begin{aligned}
& y_{2,1,1}+y_{2,1,2}=1, \\
& y_{2,2,5}+y_{2,2,6}=1, \\
& y_{2,3,6}+y_{2,3,7}=1 .
\end{aligned}
$$

For the next two constraints the auxiliary function (3.5) is defined. This function, which was already defined as equation 2.6 in chapter 1 , returns the value 1 if the two arguments are the same, and 0 otherwise, which will be useful to compare colors of two contiguous blocks.

$$
e q\left(c_{1}, c_{2}\right)= \begin{cases}1 & ; \text { if } c_{1}=c_{2} \tag{3.5}\\ 0 & ; \text { otherwise }\end{cases}
$$

To ensure that row i 's $(t+1)^{\text {th }}$ block is placed to the right of its $t^{t h}$ block, the following imposes

$$
\begin{equation*}
\forall_{e_{i, t}^{r}+1 \leq j \leq l_{i, t}^{r}} \quad y_{i, t, j} \leq \sum_{j^{\prime}=j+s_{i, t}^{r}+e q\left(c_{i, t}^{r} c_{i, t+1}^{r}\right)}^{l_{i, t+1}^{r}} y_{i, t+1, j^{\prime}} \tag{3.6}
\end{equation*}
$$

In line 2 of our example we have

$$
\begin{aligned}
& y_{2,1,2} \leq y_{2,2,6} \\
& y_{2,2,6} \leq y_{2,3,7} .
\end{aligned}
$$

To ensure that column j 's $t^{\text {th }}$ block appears in column j exactly once, the following imposes

$$
\begin{equation*}
\forall_{1 \leq j \leq n, 1 \leq t \leq b_{j}^{c}} \sum_{i=e_{j, t}^{c}}^{l_{j, t}^{c}} x_{j, t, i}=1 \tag{3.7}
\end{equation*}
$$

To ensure that column j 's $(t+1)^{\text {th }}$ block is placed under its $t^{t h}$ block, the following imposes

$$
\begin{equation*}
\forall e_{j, t}^{c}+1 \leq i \leq l_{j, t}^{c} \quad x_{j, t, i} \leq \sum_{i^{\prime}=i+s_{j, t}^{c}+e q\left(c_{j, t}^{c}, c_{j, t+1}^{c}\right)}^{l_{j, t+1}^{c}} x_{j, t+1, i^{\prime}} \tag{3.8}
\end{equation*}
$$

3.1.4 Double Coverage Constraints

To guarantee that each painted cell is covered by both a row block and a column block, the following pair of inequalities imposes:

$$
\begin{array}{ll}
\forall_{1 \leq i \leq m, 1 \leq j \leq n} & z_{i, j} \leq \sum_{t=1}^{b_{i}^{r}} \sum_{j^{\prime}=\max \left\{e_{i, t^{r}}^{r} j-s_{j, t}^{r}+1\right\}}^{\min \left\{l_{i, p}^{r} j\right\}} y_{i, t, j^{\prime}} \times c_{i, t}^{r} \\
\forall_{1 \leq i \leq m, 1 \leq j \leq n} & z_{i, j} \leq \sum_{t=1}^{b_{j}^{c}} \sum_{i^{\prime}=\max \left\{e_{j, t}^{c}, i-s_{j, t}^{c}+1\right\}}^{\min \left\{j_{j, t}^{c} i\right\}} x_{j, t, i^{\prime}} \times c_{j, t}^{c} \tag{3.10}
\end{array}
$$

Without these restrictions the model would allow having cells painted by row blocks, but not painted by any column block, or vice versa. The first inequality (3.9) states that if row i 's $j^{t h}$ cell is painted, then at least one of row i 's blocks must be placed in such a way that it covers row i 's $j^{\text {th }}$ cell. (The upper and lower limits of the second summation make sure that j^{\prime} satisfies the two pairs of inequalities $e_{i, t}^{r} \leq j^{\prime} \leq l_{i, t}^{r}$ and $j-s_{i, t}^{r}+1 \leq j^{\prime} \leq j$. The first pair holds if, and only if, row i 's $t^{\text {th }}$ cell is covered when row i 's $t^{\text {th }}$ block is placed in row i with its leftmost pixel occupying cell j^{\prime}. The second pair holds if and only if row i 's $j^{\text {th }}$ pixel is covered when row i 's $t^{t h}$ block is placed in row i with its leftmost pixel occupying pixel j^{\prime}). The other inequality (3.10) makes sure that if row i 's $j^{\text {th }}$ cell is painted, then at least one of column j 's blocks covers it. For line 2 of our example we have for cell $z_{2,4}$ that

$$
\begin{aligned}
& z_{2,5} \leq y_{2,1,2} \times c_{2,1}^{r}+y_{2,2,5} \times c_{2,2}^{r}, \\
& z_{2,5} \leq x_{5,1,1} \times c_{5,1}^{c}+x_{5,1,2} \times c_{5,1}^{c}
\end{aligned}
$$

If $z_{2,5}$ is painted, the right hand terms of these inequalities will yield exactly its color value in a solved puzzle. Otherwise (empty cell), the terms hold value 0. Ideally, the model should express this disjunction directly, allowing only those 2 values. However, in order to allow ILP
solving, it is kept as a linear inequality. Nevertheless, below it is proven that this is sufficient for a correct and complete model, in the presence of the other constraints.

Finally, constraints that prevent unpainted cells from being covered by the row blocks or column blocks are included - inequalities (3.11) and (3.12).

$$
\begin{align*}
& \forall_{1 \leq i \leq m, 1 \leq j \leq n, 1 \leq t \leq b_{i}^{r}, j-s_{i, t}^{r}+1 \leq j^{\prime} \leq j, e_{i, t}^{r} \leq j^{\prime} \leq l_{i, t}^{r}} \tag{3.11}\\
& z_{i, j} \geq y_{i, t, j^{\prime}} \times c_{i, t}^{r} \tag{3.12}\\
& \forall_{1 \leq i \leq m, 1 \leq j \leq n, 1 \leq t \leq b_{j}^{c}, e_{j, t}^{c} \leq i^{\prime} \leq l_{j, t}^{c}, i-s_{j, t}^{c}+1 \leq i^{\prime} \leq i} \\
& z_{i, j} \geq x_{j, t, i^{\prime}} \times c_{j, t}^{c}
\end{align*}
$$

In line 2 of our example we have

$$
\begin{array}{ll}
z_{2,5} \geq y_{2,1,2} \times c_{2,1}^{r}, & z_{2,5} \geq y_{2,2,5} \times c_{2,2}^{r}, \\
z_{2,5} \geq x_{5,1,1} \times c_{5,1}^{c}, & z_{2,5} \geq x_{5,1,2} \times c_{5,1}^{c} .
\end{array}
$$

One might think that it is necessary to ensure that each painted cell must be covered by one row block and one column block of the same color. However, the remaining constraints ensure that there is only the need to guarantee that a painted cell must be covered by one row block and one column block. In order to prove it, let us explore all the possibilities regarding the coverage of some cell z :

1. No block covers cell z;
2. Only one block covers cell z and it is of the same color;
3. Only one block covers cell z and its color is smaller than the color of z;
4. Only one block covers cell z and its color is greater than the color of z;
5. More than one block covers cell z;

Of these five possibilities, only the first two are possible in real puzzles. The last three are the ones that our model has to avoid.

In sake of simplicity, but with no loss of generality, only inequality (3.9), for lines, of the double coverage constraints will be used in our case analysis for these five possibilities:

Possibility 1: The only way to satisfy this possibility is with an empty cell z, with value 0 , which, by inequality (3.9), will guarantee that no block covers it (forcing the respective $y_{i, t, j^{\prime}}$ variables to be 0), i.e.

$$
\sum_{t=1}^{b_{i}^{r}} \sum_{j^{\prime}=\min \left\{e_{i, r^{r}}^{r} j-s_{i, t}^{r}+1\right\}}^{\max \left\{l_{i, t}^{r} j\right\}} y_{i, t, j^{\prime}} \times c_{i, t}^{r}=0 .
$$

Possibility 2: This possibility fully satisfies inequality (3.9), corresponding to the equality of both terms.

Possibility 3: If a single block of smaller color than the color of cell z covers it then inequality (3.9) is not satisfied, thus disallowing such possibility, as desired.

Possibility 4: In the case that there may be one block that covers cell z, and which color is greater than the color of z, then inequality (3.9) would be satisfied. However, this would violate inequality (3.11) thus turning the solution invalid.

Possibility 5: If more than one block covers cell z, inequality (3.9) could only be satisfied if the sum of the colors of the covering blocks is less than or equal to the color of cell z. But this would violate equation (3.4) thus turning the solution invalid.

3.1.5 Objective Function

Since this is a satisfaction problem there is no need for an objective function, but since ILP solvers need one, the following is included (note that this function is a constant and we already know its value):

$$
\begin{equation*}
\text { minimize/maximize } \sum_{i=1}^{m} \sum_{j=1}^{n} z_{i, j} \tag{3.13}
\end{equation*}
$$

3.1.6 Pre-conditions

We also include in our approach one pre-condition in order to verify whether the puzzle is trivially impossible to solve, before even trying to search for a solution (another improvement with respect to [7]). This is a necessary, but not sufficient condition that will save the time of trying to solve a puzzle that is impossible, and that also helps determining whether there is any error in the definition of the puzzle. This condition, shown by equation (3.14), checks whether the sum of the sizes of all blocks of each color is the same for both the rows and columns clues.

$$
\begin{equation*}
\forall_{c \in\{1 . .0\}} \quad \sum_{i=1}^{m} \sum_{t=1}^{b_{i}^{r}} f\left(s_{i, t}^{r}, c_{i, t}^{r}, c\right)=\sum_{j=1}^{n} \sum_{t=1}^{b_{j}^{c}} f\left(s_{j, t}^{c}, c_{j, t}^{c}, c\right) \tag{3.14}
\end{equation*}
$$

where $f\left(s, c_{1}, c_{2}\right)=s$ if $c_{1}=c_{2}$, and 0 otherwise.

3.2 Instantiation to Black and White Nonograms

If o is set to $1(o=1)$, thus allowing only black and white in a puzzle, our model becomes the one provided by Bosch in [7], i.e., equation (3.1) becomes

$$
z_{i, j}= \begin{cases}1 & ; \text { if row } i \prime \mathrm{~s} j^{t h} \text { cell is painted } \tag{3.15}\\ 0 & \text {; if row } i^{\prime} \mathrm{s} j^{t h} \text { cell is not painted }\end{cases}
$$

Equations (3.2) and (3.3) are kept from the approach provided by Bosch. Equation (3.4) is equal to the one in the approach by Bosch, but inequality (3.6) was extended so block $t+1$ can follow block t immediately, due to possible contiguous blocks of different colors. For black and white puzzles it corresponds exactly to the formulation in [7] since all blocks have the same color which leads the eq function to always yield value 1. Inequalities (3.7) and (3.8) are similar, but regard columns. Finally, since the only possible color takes value 1, the double coverage constraints set by inequalities (3.9) and (3.10) become

$$
\begin{gather*}
\forall_{1 \leq i \leq m, 1 \leq j \leq n} \quad z_{i, j} \leq \sum_{t=1}^{b_{i}^{r}} \sum_{j^{\prime}=\max \left\{e_{i, t}^{r}, j-s_{i, t}^{r}+1\right\}}^{\min \left\{l_{i, t}^{r}, j\right\}} y_{i, t, j^{\prime}}, \tag{3.16}\\
\forall_{1 \leq i \leq m, 1 \leq j \leq n} \quad z_{i, j} \leq \sum_{t=1}^{b_{j}^{c}} \sum_{i^{\prime}=\max \left\{e_{j, t}^{c}, i-s_{j, t}^{c}+1\right\}}^{\min \left\{\left\{_{j, t}^{c}, i\right\}\right.} x_{j, t, i^{\prime}}, \tag{3.17}\\
\forall_{1 \leq i \leq m, 1 \leq j \leq n, 1 \leq t \leq b_{i}^{r}, j-s_{i, t}^{r}+1 \leq j^{\prime} \leq j, e_{i, t}^{r} \leq j^{\prime} \leq l_{i, t}^{r}} z_{i, j} \geq y_{i, t, j^{\prime}} \tag{3.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\forall_{1 \leq i \leq m, 1 \leq j \leq n, 1 \leq t \leq b_{j}^{c}, e_{j, t}^{c} \leq i^{\prime} \leq L_{j, t}^{c}, i-s_{j, t}^{c}+1 \leq i^{\prime} \leq i} \quad z_{i, j} \geq x_{j, t, i^{\prime}} \tag{3.19}
\end{equation*}
$$

as in [7] (where the min and max functions are incorrectly swapped in the summation limits).

3.3 Finding Multiple Solutions

The described ILP model allows finding a single solution to a puzzle, which actually is the best one, although in this case all solutions are alike since the optimizing function is a constant.

Nonograms are satisfaction problems, which in ILP must be modeled as optimization problems. Since it is possible that the obtained solution is not unique, we also try to find additional solutions to a puzzle. For that, the algorithm developed by Jung-Fa Tsai et al. described in [18] was first considered. This algorithm uses an integer cut to exclude the previously found solution, extending the ILP model to a Mixed ILP model (MILP), which is the general approach to finding additional solutions in ILP. But, in fact, a much simpler approach was used by applying a binary cut similar to the one proposed by Balas and Jeroslow in [5].

Since our binary variables (either $y_{i, t, j}$ or $x_{j, t, i}$) are enough to provide the solution (they completely determine the filled puzzle, since clues are constant), a binary cut is enough.

The cut that needed to be applied to exclude an existing solution is shown in (3.20) using the y set of variables (the x set of variables could also be used).

$$
\sum_{(i, t, j) \in A} y_{i, t, j}-\sum_{(i, t, j) \in B} y_{i, t, j} \leq|A|-1, \quad \begin{align*}
& A=\left\{(i, t, j) \mid y_{i, t, j}=1\right\}, \tag{3.20}\\
& B=\left\{(i, t, j) \mid y_{i, t, j}=0\right\}
\end{align*}
$$

Basically, after finding a solution to the problem, the constraints in inequality (3.20) are added to the problem and another try is made to find another solution.

3.4 Hybrid model

The hybrid model we propose here basically consists in substituting the search part of the iterative approach by our ILP model.

At first, the puzzle is logically solved, i.e., one or more line-solvers are applied to every line of the puzzle, repeatedly, until there is no more information that can be inferred. Then, if the puzzle is not completely solved, the ILP model is instantiated.

Our implementation generates a CPLEX LP file (.lp) that represents the current state of the puzzle according to the model presented in section 3.1. This approach is more flexible than generating the ILP model specifically for a solver like SCIP [4] or CPLEX [3] because it allows the comparison of results between different ILP solvers.

SCIP is currently one of the fastest non-commercial mixed integer programming (MIP) solver. ILOG CPLEX©is a commercial mathematical programming optimizer that, among other things, solves mixed integer programs. Although SCIP is advertised as the best performing non-commercial MIP solver, CPLEX - the best MIP solver - is five times faster.

The process of instantiating our ILP model, and subsequently generating the LP file, envolves the following steps:

- Compute earliest and latest constants
- Write objective function to file
- Write block constraints to file
- Write double coverage constraints to file
- Write bounds to file: here is where the partial solution found by the iterative approach is inserted in the ILP model
- Write all the variables to file

Since among the best performing implementations of the iterative approach only pbnsolve and Olšák's (grid) can solve colored nonograms, we decided to adapt pbnsolve into our hybrid approach. The reason we did not choose grid was that the program code comments are in Czech. On the other hand, pbnsolve's code comments are very complete and understandable. Steven Simpson's nonogram [16] can not solve colored nonograms.

Also, for testing purposes, we did not implement Balas and Jeroslow's binary cut in this approach.

4. Results

In the previous chapter our ILP model for solving colored nonograms was described. We also described an hybrid approach to solving colored nonograms between the iterative and the ILP ones.

Here, we present the results of the performance tests we ran in order to compare the different approaches to solving colored nonograms.

First we present the results between our pure ILP approach and the iterative and the depthfirst search ones. Then we show the results obtained by comparing our hybrid approach and the iterative one.

4.1 Pure ILP approach

In order to test the performance of the model described in Chapter 3 (without the use of Balas and Jeroslow's algorithm) it was tested against three algorithms: one adaptation (the original program solves only black and white nonograms) of an implementation in Prolog of a brute force search by Werner Hett [10], an optimized variant of this implementation (by altering the ordering of the line tasks) and an implementation in C of the iterative approach by Mirek Olšák and Petr Olšák available in [13].

Four puzzles were used for the purpose of these tests: the "Fall" puzzle from Griddlers.net [2] ($10 x 8 x 3$, i.e. a 10 by 8 grid with 3 colors) used as an example in this dissertation (figure 1.2), the "Fish" and the "AtoZ" puzzles (16x16x2) from Ali Corbin's web page [8], and the "Time" adapted from the copyrighted Sunday Telegraph \& Aenigma Design and colored by Brian Grainger ($35 \times 30 \times 5$) [9].

The times were measured on a 2.4 GHz Intel ${ }^{\circledR}$ Centrino $^{\circledR}{ }^{\ominus} \mathrm{vPro}^{\mathrm{TM}}$ with 2 GB of RAM running Microsoft ${ }^{\ominus}$ Windows ${ }^{\ominus}$. The Prolog program was run in ECLiPSe [1] and the generated ILP problems were run on SCIP [4]. Results are shown in table 4.1, where NPC stands for "Number of Painted Cells".

As shown in table 4.1 the first puzzle was solved almost instantly by both the iterative implementation and the ILP approach. The brute-force implementation took about 17 minutes to return the results. With some optimization applied to the brute-force approach, namely by

Table 4.1 Experimental Results (in seconds)

Puzzle	$\mathrm{R} \times \mathrm{C} \times \mathrm{Col}$	NPC	Brute-force (Prolog)	Brute-force opt (Prolog)	Iterative	ILP
Fall	$10 \times 8 \times 3$	47	$1,050.70$	0.03	0.07	0.03
Fish	$16 \times 16 \times 2$	164	(too long)	0.08	0.07	0.21
AtoZ	$16 \times 16 \times 2$	50	(too long)	0.92	0.10	23.04
Time	$35 \times 30 \times 5$	520	(too long)	(out of memory)	0.21	3.51

Table 4.2 Results of adding equation (4.1) to ILP (in seconds)

Puzzle	ILP	ILP w/ AC
Fall	0.03	0.03
Fish	0.21	0.11
AtoZ	23.04	33.58
Time	3.51	2.45

re-sorting the line tasks, the puzzle is also solved almost instantly. The "Fish" puzzle is a little harder to solve. The brute-force approach was not able to solve it in a timely fashion although all other approaches solved it pretty quickly. The other 16 x16 puzzle - "AtoZ" - is even harder to solve. This was the hardest puzzle to solve by the ILP approach. The fourth (and biggest) puzzle could not be solved by the brute-force algorithms. The iterative approach found all 14 solutions to the puzzle in less than half a second and the ILP approach took about 3.5 seconds to find the fist one.

In order to try to improve the results of the ILP approach we added equation (4.1) to the set of constraints, where the right-hand term is a constant.

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} z_{i, j}=\sum_{i=1}^{m} \sum_{t=1}^{b_{i}^{r}} s_{i, t}^{r} \times c_{i, t}^{r} \tag{4.1}
\end{equation*}
$$

We believed that by adding this constraint, the solver would reach a solution sooner since the objective value for the problem was already defined (is a constant).

The results are shown in table 4.2, where AC means "Additional Constraint".
Only the performance on the hardest puzzle was not improved which turns out to be inconclusive as to the advantages of adding this extra constraint.

4.2 Nonogram Generator

In order to test the different approaches in a proper manner a set of a substantial number of puzzles with varying dimensions, number of colors and densities should be used. To accomplish this we decided to create a nonogram puzzle generator.

By developing this generator we also solved the problem of converting the puzzles to the different file formats supported by each approach.

This generator allows the generation of puzzles based on number of rows, number of columns, number of colors, global density (amount of painted cells vs. available cells - number of rows \times number of columns) and density by color. The puzzles are generated by painting randomly chosen cells with specific or randomly chosen colors and then obtaining the clues from the grid. The generated puzzle can then be saved as a Bosch based file format (adapted for colored nonograms), an Olšák file format or a Hett [10] list based Prolog format (also adapted for colored
nonograms).
Examples of the file formats created by our generator for puzzle shown in figure 4.1 are shown in appendix B.

Figure 4.1 Generated nonogram

Bosch's based file format begins with a puzzle definition section where the dimension of the puzzle and the its number of colors are defined (excluding the background color). we also added a title field in order to identify the puzzle more easily:
title: TEST_20x20x5_101
number_of_rows: 20
number_of_columns: 20
number_of_colors: 5
After the puzzle definition section follows the clues for the rows. Here, the number of clusters is defined for each row and after, the blocks' sizes and colors are defined:
row_1:
number_of_clusters: 3
size(s): 111
color(s): 111

The last section of the file defines the clues for the columns and its format is similar to the previous one.

In Olšák's file format all text before "\#" or ":" in the first column is ignored. If the puzzle has colored blocks then we need to write "\#D" or "\#d" in the first column.

This line denotes the start of the color declaration. The color declaration ends by a ":" in the first column and the block declarations follow at the next line immediately.

Lines of color declarations have the following format:
<spaces><inchar><colon><outchar><spaces><word_XPM><spaces><comment>
The < spaces> denotes zero or more spaces or tabs. The exception: <word_XPM> has to be terminated by one or more spaces and/or tabs.
<inchar> is a character used to identify a color in the block declaration section, after the numbers that represent their sizes. digits, spaces, commas or tab can not be used for <inchar> declaration. The " 0 " and " 1 " are exceptions, see bellow.
<outchar> is a character which will be used to represent that color in the terminal printing of the solution.
<word_XPM> is the word (without spaces) used in XPM format for color declaration. we can use the natural word for the color (e.g. blue) or a six hexadecimal digits preceded by a "\#" that represents a RGB color (e.g. "\#0000FF"). In order to use a natural word for colors they have to be defined in the rgb.txt of the X window system where program runs.

If <inchar> is " 0 ", then this line declares the color for the background of the image. If this declaration is omitted white will be used as the background color.

If <inchar> is "1", then this line declares the "default" color of blocks. This color is used if no <inchar> follows the block declaration. If this line is omitted then the color must be specified for each block declaration.

Each block declaration section (one for row and one for columns) begins after a line with a colon. For every line of the puzzle a sequence of size and color pairs (without spaces separating the size and the color) separated by spaces or tabs.

Hett's based file format is defined as a predicate with three arguments: a title and two lists. Each list defines the list of blocks for rows and columns and is composed of a list of blocks that can be empty. Each block is another list with two elements: a size and a color.

4.3 Hybrid ILP approach

For the purpose of this work 270 problems were generated divided in three large subsets of $20 \times 20 \times 5$ (number of rows by number of columns with number of colors), $40 \times 60 \times 5$ and $100 \times 100 \times 5$. Each of these subsets contains 90 problems divided by density (10 of each density - $10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%$ and 90%).

This hybrid ILP solution was tested against pbnsolve - the implementation in C of the iterative approach by Jan Wolter available in [22]. Due to the poor results shown by the Prolog implementations by Werner Hett [10] they were removed from this test.

We imposed a time limit of 15 minutes for solving each of the puzzles in both approaches.
The results were not the ones we expected. The iterative approach is still the fastest to solve colored nonograms and was the one that solved more nonograms within the 15 minutes timeframe we imposed. Also, in terms of memory consumption, the iterative approach is better. Although the save and load times of the .lp files generated from our sample set of nonograms were not taken into account, some were over 100 MB in size. This means that if these times were added the results would be worse. Of course, if these times were taken into account we would be penalizing the ILP model with hard disk access (much slower than memory access). A solution to this problem would be to completely integrate the hybrid approach, i.e., without generating any files.

In table 4.3 the number of puzzles solved by each approach and by dimension is shown. Note that if the puzzle is logically solvable it does not count to either the ILP or the iterative approaches.

Table 4.3 Number of solved puzzles by method and dimension

	100×100	40×60	20×20	Total
Logically solvable	0	4	22	26
Iterative with search	50	61	68	179
ILP	42	5	68	115
Total	92	70	158	320

In table 4.4 the number of puzzles solved by each approach and by puzzle density is shown. Again, if the puzzle is logically solvable it does not count to any other approach.

Table 4.4 Number of solved puzzles by method and density

	10%	20%	30%	40%	50%	60%	70%	80%	90%	Total
Logically solvable						1	5	7	13	26
Iterative with search	18	12	10	15	30	29	25	23	17	179
ILP	10	10	10	10	17	19	15	14	10	115
Total	28	22	20	25	47	49	45	44	40	320

Table 4.5 presents the average time each approach took to solve the different puzzle by size. The values include the logical solving.

Table 4.6 presents the average time each approach took to solve the puzzles by density. This values include logical solving.

It seems clear that lower density puzzles are harder to solve, specially if their size is large. In fact, when there are few cells to fill in the grid it becomes harder to logically solve the puzzle. This means that the puzzle is solved largely by search with backtracking, in case of the iterative approach, or by applying our ILP model. In either case the process is computationally heavy.

Table 4.5 Average time to solve a puzzle by dimension

	Average of ILP Total Time	Average of Iterative Total Time
100×100	39,031728	0,866221
20×20	2,600312	0,004404
40×60	6,886713	0,527231
Total	13,725823	0,380377

Table 4.6 Average time to solve a puzzle by density

	Average of ILP Time	Average of Iterative Time
10%	0,323448	0,768844
20%	14,997813	0,790693
30%	6,991948	0,011389
40%	0,454907	0,683674
50%	61,614073	1,389269
60%	12,522192	0,056861
70%	9,507734	0,016201
80%	6,576823	0,009129
90%	3,543865	0,004569
Total	13,725823	0,380377

Full results of these tests can be found in table A. 1 in appendix A. The times are presented in seconds and were obtained on a 1.8 GHz Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR} \mathrm{M}$ with 1 GB of RAM. The generated ILP problems were run on SCIP [4].

We could also test our hybrid approach with CPLEX on a 3.0 GHz Intel ${ }^{\odot}$ Core $^{\mathrm{TM}}$ Duo machine with 2 GB of RAM and although we could not analyze them in detail, the results were significantly better than results we obtained with SCIP. Some puzzles that could not be solved by SCIP within the 15 minutes window were solved by CPLEX and some puzzles were solved seven times (and more) faster than with SCIP.

5. Conclusions and Future Work

In this dissertation we presented a new ILP approach to model the Colored Nonograms problem, which generalizes a known approach which was limited to black and white Nonograms. We demonstrated its correctness and, additionally, we also showed how to efficiently find possible additional solutions by a simple adaptation of a known technique using a binary cut, by taking advantage of the specificities of this problem. This work developed during this Master led to the publication of the article [12].

We also enhanced the aforementioned model by merging it with an iterative approach thus providing an hybrid approach to colored nonograms.

In order to provide a significant sample set of puzzles, for test and comparisons, we also developed a nonogram generator. This generator allows us to create puzzles given their width, height, color count and density (either global or by color) and then to save them in three formats: Bosch's variant for colored nonograms, Olšák's format and a Hett [10] list based Prolog format variant for colored nonograms.

The hybrid model results were not the ones we expected. The iterative approach is still the fastest to solve colored nonograms and was the one that solved more nonograms within the 15 minutes timeframe we imposed. Also, in terms of memory consumption, the iterative approach is better. Some of the .lp files generated from our largest sample nonograms were over 100 MB in size which is a consequence of the great amount of variables and constraints that consume a lot of memory.

This also means that maybe there is room for improvement. First by fully integrating the model in one tool and then by trying to fine tune the model. One example of this can be to change the objective function and include the objective function value as a constraint and use CPLEX to verify the results. Specially for the more complex puzzles that were not solved by either approach, within the 15 minutes window we defined.

Another way the model can be improved is by trying to implement a backtracking mechanism with ILP, i.e, instead of trying to find a final solution with the ILP model, we try to find a partial solution and then reapply the iterative approach the partial solution.

The model can also be improved in order to solve other problems, like triddlers.
The nonogram puzzle generator developed can also be improved by allowing to take into account the number of blocks of a puzzle. With the current approach, the puzzles generated have often a large number of small size blocks.

A. Full Results

Table A.1: Full Results (in seconds)

Title	W	H	C	Dens.H Blks	V Cells Blks logically solved	Cells	ILP state	Logic time	$\begin{aligned} & \text { ILP } \\ & \text { Total } \\ & \text { Time } \end{aligned}$	Iterative Total Time
ST_100x100x5_101	100	100	5	10\% 909	9141137	10000	ILP unsolved		(tim	ut)
TEST_100x100x5_102	100	100	5	10\% 908	9201016	10000	ILP unsolved	0,07	(tim	(timeout)
TEST_100x100x5_103	100	100	5	10\% 904	9201209	10000	ILP unsolved	0,063	tim	(imeout)
TEST_100x100x5_104	100	100	5	10\% 915	9041330	10000	ILP unsolved	0,03	(tim	(timeout)
TEST_100x100x5_105	100	100	5	10\% 892	8991512	10000	ILP unsolved	0,06	(tim	timeout)
TEST_100x100x5_106	100	100	5	10\% 929	9061190	10000	ILP unsolved	0,07	(tim	(imeout)
TEST_100x100x5_107	100	100	5	10\% 913	8991527	10000	ILP unsolved	0,03	(time	(timeout)
TEST_100x100x5_108	100	100	5	10\% 918	8991227	10000	ILP unsolved	0,06	(tim	timeout)
TEST_100x100x5_109	100	100	5	10\% 899	9181041	10000	ILP unsolved	0,070	(time	(timeout)
TEST_100x100x5_110	100	100	5	10\% 921	9051075	10000	ILP unsolved	0,06	(time	(timeout)
TEST_100x100x5_201	100	100	5	20\% 1670	674257	10000	ILP unsolved	0,08	(tim	(timeout)
TEST_100x100x5_202	100	100	5	20\% 1648	1685155	10000	ILP unsolved	0,082	(time	(timeout)
TEST_100x100x5_203	100	100	5	20\% 1670	1691209	10000	ILP unsolved	0,08	(time	(timeout)
TEST_100x100x5_204	100	100	5	20\% 1674	41642172	10000	ILP unsolved	0,08	(tim	(timeout)
TEST_100x100x5_205	100	100	5	20\% 1666	1680221	10000	ILP unsolved	0,078	(time	(timeout)
TEST_100x100x5_206	100	100	5	20\% 1704	4 1686145	10000	ILP unsolved	0,09	(time	(timeout)
TEST_100x100x5_207	100	100	5	20\% 1673	31694126	10000	ILP unsolved	0,08	(time	(timeout)
TEST_100x100x5_208	100	100	5	20\% 1678	81707226	10000	ILP unsolved	0,0811	(time	(imeout)
TEST_100x100x5_209	100	100	5	20\% 1684	41681279	10000	ILP unsolved	0,07	(time	(timeout)
TEST_100x100x5_210	100	100	5	20\% 1649	1681219	10000	ILP unsolved	0,085	(time	(timeout)
TEST_100x100x5_301	100	100	5	30\% 2278	82359191	10000	ILP unsolved	0,0852	(time	(timeout)
TEST_100x100x5_302	100	100	5	30\% 2318	82350200	10000	ILP unsolved	0,1187	(time	(timeout)
TEST_100x100x5_303	100	100	5	30\% 2306	62333194	10000	ILP unsolved	0,08	(time	(timeout)
TEST_100x100x5_304	100	100	5	30\% 2344	42329209	10000	ILP unsolved	0,086	(time	(timeout)
TEST_100x100x5_305	100	100	5	30\% 2298	82319197	10000	ILP unsolved	0,088	(time	(time

0，089121（timeout）（timeout） 0，086357（timeout）（timeout） 0,089197 （timeout）（timeout） 0,125440 （timeout）（timeout） 0，087015（timeout）（timeout） 0，083406（timeout）（timeout） 0,130944 （timeout）（timeout） 0，089428（timeout）（timeout） 0，087703（timeout）（timeout） 0，090675（timeout）（timeout） 0，122355（timeout）（timeout） （¥noәш！̣）（ŋnoәш！̣）E0szZI‘0 0,157251 （timeout）（timeout）
 （¥noәш！̣！）（ŋnoәш！̣）6ヵZLZI‘0 0,092937 （timeout）6，170296 0,077249 （timeout）4，136845 0，097762（timeout）2，387747 0,097296 466，8872964，412709 0888L9‘E（¥nоәш！̣）0Z8E80‘0 Z000SL‘9（¥noәu！̣）LOSE60‘0 $0,082643515,762643,677742$ 0,104757 （timeout）2，671261 0，086351（timeout）3，011243 0,075568 （timeout）7，042581 986をt「＂0と8E89でくて E8E8Z0‘0 $0,02901424,9690140,126308$ 0，031004 24，4010040，135391

 $0,02870024,6987000,183959$ 10000 ILP unsolved ILP unsolved ILP unsolved ILP unsolved ILP unsolved | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| \vdots | D

0
0
0
0

0 \begin{tabular}{l}
0

0

0

0

\hline

0

0

0

0

0

0

\hline

D

0

0

0

0

0

\hline

D

0

0

0

0

\hline

\hline

0

0

0

0

0

\hline

0

0

0

0

0

\hline 1
\end{tabular} D

0
0
0
0
0

0 \begin{tabular}{l}
0

0

0

0

0

0

\hline

0

0

0

0

0

\hline

0

0

0

0

\hline

D

0

0

0

0

0

\hline
\end{tabular} ㅂ

另官
完 ILP unsolved ILP solved
 0
0
0
0
0 ILP solved 0
0
0
0
0
0
\vdots
$=$
0，029289 25，8492890，203829 0,027012 25，3770120，208551 0，028461 24，8584610，187681 0,027075 24，2470750，131486
 0tZ0E0＇09SLLEt＇8I 9SLLIO‘0 ELSZSO＂090660S‘8I 9066I0‘0 $0,01845318,7684530,028317$ $0,01967619,0096760,033532$ 0,019487 19，0094870，054427 0LIEE0＇0S6886I＇6I S688I0‘0 ऽ8E8S0＇000Z6tと＇6I 00Z6I0‘0
 0,019212 19，2792120，059264 $0,01469013,7646900,024836$ L8Z9EO＇0IOZS86＇とI LOZSIO0 $0,01467513,8846750,017973$ 06と0Z0‘069Lt8t「とI 69LtIO‘0 $0,01446113,5944610,021018$ $0,01434313,9643430,021563$ $0,01414013,5441400,018527$ 88SLZ0‘0896t90‘tI 896tI0‘0
 $0,01468413,7546840,030590$ 0，009972 8，019972 0，010225 $0,0099498,1799490,011321$ $0,0104438,3704430,012427$ $0,0097658,1797650,010747$ 0，010170 8，180170 0，012770 0，009826 7，899826 0，010810 $0,0097278,2697270,011162$

ILP solved
 0
0
0
0
0
0
\vdots 0
0
0
0
0
0 0
0
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 | 0

0
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 | ILP solved 0

0
0
0
0 0
0
0
0
号 0
0
0
0

号 | D |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 | ILP solved \ddot{D}

0
0
0
0 0
0
0
0
0 0
0
0
0
号 ILP solved ILP solved LP solved己
0
0
号 \square
0
0
0
0
3 0
0
0
0
岂 ILP solved $\overline{0}$
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 | ILP solved D

0
0
0
$=$ ILP solved 0
0
0
0
0
0
0
$=1$ 10000 10000 10000 8 10000 8 10000 10000 10000 10000 8 8 8 10000 10000 8 8 8 10000 O 8 8 8 10000 10000 8 8 8 10000 8 $60 \% 392940409723$
 $70 \% 438744729903$ $70 \% 427144269937$

 $70 \% 433344529919$ $70 \% 440444529892$ $70 \% 434444269933$

 $70 \% 441244949896$

 $80 \% 484649329968$

 $80 \% 489049419932$ $90 \% 540655839996$ 90\％ 543256409984
 $90 \% 536254969988$

 TEST＿100x100x5＿607
 TEST＿100x100x5＿609 TEST＿100x100x5＿610 TEST＿100x100x5＿701 TEST＿100x100x5＿702 TEST＿100x100x5＿703 TEST＿100x100x5＿704 TEST＿100x100x5＿705 TEST＿100x100x5＿706 TEST＿100x100x5＿707 TEST＿100x100x5＿708 TEST＿100x100x5＿709 TEST＿100x100x5＿710 TEST＿100x100x5＿801

 TEST＿100x100x5＿804 TEST＿100x100x5＿805 TEST＿100x100x5＿806 TEST＿100x 100x5＿807
 TEST＿100x100x5＿809 TEST＿100x100x5＿810 TEST＿100x100x5＿901 TEST＿100x 100x5＿902
 TEST＿100x100x5＿904 TEST＿100x100x5＿905 TEST＿100x100x5＿906 TEST＿100x100x5 907
0，009577 8，139577 0，009752 $0,0095778,1395770,009752$
$0,0103788,030378$
0,012155 $0,0100388,2300380,011422$ $0,0004140,2304140,002913$ $0,0005130,2505130,010351$ $0,0004040,2004040,003400$ $0,0003850,3203850,003437$ $0,0003870,2403870,003885$ 0，000520 0，430520 0，007968 $0,0004090,2604090,006111$ Eャ0L00＇0 OLS08t＇0 OLS000‘0 $0,0004470,3504470,006824$ $0,0004310,4704310,006595$ E9I600＇0StlIZI＇sI StLIO0＇0 $0,0007551,1307550,006837$ てLtS00‘0 6090LE‘I 609000‘0 9IS600＇0 ZS80It＇L ZS8000‘0

 8E69と0‘0 Z880t6‘I Z88000＊0 0，000659 50，7406590，016752 80tちLO＂OZ680E6＇EI Z68000「0 9LtSLO＇00t80EL‘6I 0t8000‘0 tEOSIO‘0 6I900S＇I 6I9000‘0 SOt600＇0 LSOIE8＂0 LSOIOO‘0 0，001001 2，451001 0，012291 ऽE6600‘0 980IOS‘I 980I00‘0 0，000938 0，700938 0，009325 $0,0010656,3510650,012081$ 0，000732 2，380732 0，008592 0，000775 30，4207750，017811 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 2 |
| |
| 0 |
| 8 |
| 0 |

10000 ILP solved o
0
0
0
0
0
号

岂 ILP solved \begin{tabular}{l}
D

2

0

0

0

2

\hline \multirow{2}{c}{}

\square

0

0

0

$~$

\hline 1
\end{tabular} ралгоs dTI рәл还 dTI pasios dTI 0

0
0
0
0

0 \begin{tabular}{l}
0

0

0

0

0

0

\hline 1

 pasios dTI

0

0

0

0

0

\hline 1

0

0

0

0

0

\hline

0

0

0

0

0

\hline 1
\end{tabular} poros dT pəл 0

0
0
0
0

0 \begin{tabular}{l}
D

己

0

0

$~$

\hline

0

0

0

0

0

\hline
\end{tabular} рәл［os dTI ILP solved

 pasios dTI | 0 |
| :--- |
| 0 |
| 0 |
| 0 | 0

0
0
0
$=$
 90\％ 541955489996

 TEST＿100x100x5＿908 TEST＿－100x100x5＿909 TEST＿100x100x5＿910 TEST＿20x20x5＿101

 TEST＿20x20x5＿105
 TEST＿20x20x5＿107

 TEST＿20x20x5＿110
 TEST＿20x20x5＿202 TEST＿20x20x5＿203 TEST＿20x20x5＿204 TEST＿20x20x5＿205 TEST＿20x20x5＿206 TEST＿20x20x5＿207 TEST＿20x20x5＿208
 TEST＿20x20x5＿210 TEST＿20x20x5＿301 TEST＿20x20x5＿302 TEST $20 \times 20 \times 5$＿303
 TEST＿20x20x5＿305 TEST＿20x20x5＿306 TEST＿20x20x5＿307 TEST＿20x20x5＿308
$0,0010571,0510570,013764$
$0,00076322,8707630,009014$ $0,0008690,3908690,002639$ 0，000930 0，470930 0，004633 0，000855 0，420855 0，003291 SttZ00‘0 6IOIEE‘0 6IOI00‘0 $0,0008550,4308550,003408$ L69900＇0 6E0I06＇0 6E0I00‘0 ItIE00‘0 9LL08E‘0 9LL000‘0 LOOZ00‘0 6I80IE‘0 6I8000‘0 LOOE00‘0 0060¢E‘0 $006000^{\circ} 0$ 86Sc00‘0 900I9s‘0 900L00‘0 ャIてZ00‘0 It806を‘0 It8000‘0
 I6L000‘0 90L0tで0 90L000‘0 9 96000‘0 6t LOtで0 6tLOOO‘0 てとL000‘0 Lt90てで0 Lt9000‘0 0ZEZ00‘0 tL80EE‘0 tL8000‘0 S66000‘0 เELOEZ‘0 เEL000‘0 60とL00‘0 8SL09で0 8SL000‘0 ZLIEO0＇0 IELOLE‘0 IELOOO‘0 EESL00‘0 8ZL08て＇0 8ZL000‘0
 8LL000‘0 ZI90とで0 ZI9000‘0 เ89000‘0 LS90Iで0 LS9000‘0 It8000‘0 LELOIZ‘0 LELOOO‘0 90\＆L00‘0 L690っで0 I69000‘0 LI6000‘0 tt900て‘0 tt9000‘0 999000 © 6E90Iで0 6E9000＊0 IS9000‘0 St 9000 ‘0 St9000‘0 EI8000‘0 EILOZZ‘0 £ILOOO‘0
\square
0
0
0
0 d
0
0
0
0
0
0
0
0
0
0
0
0
0

0，000687 0，230687 0，000826 $0,0005510,1905510,000581$ 0，000536 0，180536 0，000564 0，000494 0，000494 0，000499 0，000504 0，000504 0，000508 0，000566 0，190566 0，000664 0，000543 0，200543 0，000698 $0,0005640,0005640,000504$ 0，000584 0，190584 0，000689 0，000496 0，000496 0，000498 0，000493 0，000493 0，000493 モโt000‘0 80t000‘0 80†000‘0 E8t000＇0 I6t09I‘0 I6t000‘0 $0,0004120,0004120,000413$ カเt000‘0 てEt000‘0 てEt000‘0 E0t000‘0 E0t000‘0 E0t000‘0 $0,0004170,0004170,000423$ $0,0004280,1504280,000456$ $0,0004770,1604770,000512$ LEt000‘0 てEt000‘0 ZEt000‘0

 เ0と000‘0 86Z000‘0 86Z000‘0 0，000310 0，000310 0，000317 $0,0002940,0002940,000311$ 6IE000‘0 LtE000‘0 LtE000‘0 $0,0003070,0003070,000311$ 8IE000＊0 SIE000‘0 §IE000‘0 $0,0003400,0003400,000346$ LもE000‘0 ItE000‘0 ItE000‘0 $0,0003040,0003040,000306$

 TEST＿20x20x5＿610
 TEST＿20x20x5＿702 TEST＿20x20x5＿703 TEST＿20x20x5＿704 TEST＿20x20x5＿705
 TEST＿20x20x5＿707 TEST＿20x20x5＿708 TEST＿20x20x5＿709 TEST＿20x20x5＿710
 TEST＿20x20x5＿802
 TEST＿20x20x5＿804 TEST＿20x20x5＿805
 TEST＿20x20x5＿807 TEST＿20x20x5＿808 TEST＿20x20x5＿809

 TEST＿20x20x5＿902 TEST＿20x20x5＿903 TEST＿20x20x5＿904 TEST＿20x20x5＿905
 TEST＿20x20x5＿907 TEST＿20x20x5＿908 TEST＿20x20x5＿909 TEST＿20x20x5＿910
0，004056（timeout）7，161453 0,006858 （timeout）（timeout） 0,004164 （timeout） 0,950963 0,004068 （timeout）（timeout） 0,007291 （timeout） 0,878390 0,007316 （timeout） 0,960155 0,004359 （timeout） 1,030183 L6tIS8＇0（ŋnoәш！̣）Lttt00‘0 0,006911 （timeout） 0,858506
 （ŋnоәш！̣）（ŋnоәш！̣）I6L010‘0 （џnоәш！̣）（џnоәш！̣）ISS6000 （¥nоәш！̣！）（ŋnоәш！̣）ZZS600‘0 （¥noәш！̣）（（nоәш！̣）LZZSL0‘0 （¥noәш！̣！）（ŋnoәш！̣）98t010‘0
 てLL8LI‘E（ŋnozu！̣）9ItII0‘0 ESI6IZ‘9（ŋnоәш！̣）t0L600‘0 （¥noaш！̣）（ŋnоәш！̣！）$t t L 600^{\circ} 0$

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 0,012222 （timeout）（timeout） （¥noәш！̣）（ŋnoәш！！）00zZI0‘0 （¥noaш！̣）（ŋnoәш！！）I9IEL0‘0
 （¥noәш！̣）（ \ddagger noәш！̣）96tLI0‘0 0
0
0
0
0
0
0
0
0
0
0
0

 \begin{tabular}{l}
D

0

0

0

0

\vdots

\hline

 ILP unsolved ILP unsolved

D

0

0

0

0

\hline

0

0

0

0

0

\hline

0

0

0

0

0

\vdots

\hline 1

0

0

0

0

0

0

\hline 1
\end{tabular} pas＿osun dTI 0

0
0
0
0

0 \begin{tabular}{l}
D

0

0

0

0

0

\hline

D

0

0

0

0

\hline

D

0

0

0

0

0

\hline

 ILP unsolved

0

0

0

0

0

\hline

D

0

0

0

0

\vdots

\hline

D

0

0

0

0

\hline

D

0

0

0

0

0

\hline

D

0

0

0

0

\hline

 рәл［osun dTI

D

0

0

0

0

0

\hline
\end{tabular}

 \begin{tabular}{l}
0

0

0

0

0

0

\hline

 ILP unsolved

D

0

0

0

0

0

\hline

D

0

0

0

0

0

\hline

D

0

0

0

0

0

\hline

D

0

0

0

0

0

\hline

0

0

0

0

0

0

\hline
\end{tabular} 0

0
0
0
0
0

 8888888888888888888888888888888
 TEST＿40x60x5＿101
 TEST＿40x60x5＿103 TEST＿40x60x5＿104 TEST＿40x60x5＿105

 TEST＿40x60x5＿109 TEST＿40x60x5＿110

 TEST＿40x60x5＿203 †0で $\mathrm{cx}_{0} 09 \times 0 \mathrm{t}^{-}$LSAL TEST＿40x60x5＿205

 TEST＿40x60x5＿208 TEST＿40x60x5＿209 TEST＿40x60x5＿210 TEST＿40x60x5＿301
 TEST＿40x60x5＿303 TEST＿40x60x5＿304 TEST＿40x60x5＿305 TEST＿40x60x5＿306
 TEST＿40x60x5＿308 TEST＿40x60x5＿309 TEST＿40x60x5＿310 TEST＿40x60x5＿401

0，015723（timeout）（timeout） 0，019880（timeout）（timeout） 0，020291（timeout）2，202518 0，016832（timeout）（timeout） 0,016570 （timeout）（timeout） 0t9LL8‘I（łnoәu！！）9ttSI0‘0 0,016324 （timeout）1，915703 （ұnoәu！̣）（ұnoәu！̣）七0IOZ0‘0 0,018040 （timeout）2，089891 $0,0071714,6871710,035270$ †06080‘0SLL6I L’8E SLL600‘0七9L980‘0 6ES8Iで9 6ES800＂0七9ZIZI‘0 06E8EL’L 06E800‘0 L8LtS0‘0 8t6L09‘t 8t6L00‘0 0ZEZSI‘0（пnoəu！̣）6ES0I0‘0 S08St0‘0（૧noәu！！）¢9t0I0‘0 Z98690‘0（ппоәш！̣）828800‘0 0L99t0‘0（¥noəw！̣）9ELL00‘0 0,007792 （timeout）0，029974 SIZ800‘0（¥noәu！̣）tE9t00‘0 0,005015 （timeout）0，013051 0,004687 （timeout）0，009482 0,005095 （timeout）0，012224 0,004957 （timeout）0，008120 0,004897 （timeout）0，007288 0,004868 （timeout）0，006551 0,004742 （timeout）0，010551七tS600‘0（ұпоәш！！）\＆Z6t00＇0 0,004887 （timeout）0，018731 I66t00‘0（¥noәu！！）8SLE00‘0 0,003831 （timeout）0，005366 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| |

 D LP solved ILP solved | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| | $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \\ 0 & \\ 0 & 0\end{array}$ 0

0
0
0
\vdots
\vdots
\vdots
\vdots рәл［osun dTI 0
0
0
0
\vdots
\vdots
\vdots pəs［osun dTI ILP unsolved 0
0
0
0
0
0
\vdots
\vdots
 0
0
0
0
\vdots
\vdots
\vdots
\vdots ILP unsolved 0
\vdots
0
\vdots
\vdots
\vdots
\vdots D
0
0
0
\vdots
\vdots
\vdots ILP unsolved
 0
0
0
\vdots
\vdots
\vdots
\vdots 0
0
0
0
0
0
0

 TEST＿40x60x5＿402
 TEST＿40x60x5＿404 TEST＿40x60x5＿405 TEST 40x60x5＿406 TEST＿40x60x5＿407 TEST＿40x60x5＿408 TEST＿40x60x5＿409 TEST＿40x60x5＿410 TEST＿40x60x5＿501

 TEST＿40x60x5＿504 TEST＿40x60x5＿505 TEST＿40x60x5＿506 TEST＿40x60x5＿507
 TEST＿40x60x5＿509 TEST＿40x60x5＿510 TEST＿40x60x5＿601 TEST＿40x60x5＿602 TEST＿40x60x5＿603 TEST＿40x60x5＿604 TEST＿40x60x5＿605 TEST＿40x60x5＿606 TEST＿40x60x5＿607 TEST＿40x60x5＿608 TEST＿40x60x5＿609 TEST＿40x60x5＿610 TEST＿40x60x5＿701 TEST＿40x60x5＿702

0,003817 （timeout） 0,005437 0，004348（timeout）0，006447 0，003827（timeout）0，004833 0,003998 （timeout） 0,005422 0,003638 （timeout） 0,004216 0，003619（timeout）0，004144 ZS8t00‘0（ınоәш！̣）E6LE00＊0 9tZS00‘0（ŋnоәш！̣）8L9E00‘0
 SS8E00＇0（ınоәш！̣）tSIE00‘0 L6SE00‘0（ınoәu！̣）6SZE00‘0 てZ8E00‘0（эпоәш！！）E06Z00‘0 $0,0026770,0026770,002650$ 80tE00「0（ュnоәш！！）8Z0E00‘0 LLZE00＇0（эпоәш！！）980E00‘0 0，002960（timeout）0，003011
 0，003022（timeout）0，003947 8LOZ00‘0 ZLOZ00‘0 ZLOZ00‘0 0t0Z0060（ュnoәш！̣）886I00‘0 0,002103 （timeout） 0,002191 L90Z00‘0（ınоәш！̣） \mathcal{L}（0Z00‘0 0,002260 （timeout） 0,002317 0,002205 （timeout） 0,002254 0，001986 0，001986 0，001994 $0,0018610,0018610,001865$
 0,001822 （timeout） 0,002014

TEST＿40x60x5＿703 TEST＿40x60x5＿704 TEST＿40x60x5＿705 TEST＿40x60x5＿706 TEST 40x60x5＿707 TEST＿40x60x5＿708 TEST＿40x60x5＿709 TEST＿40x60x5＿710 TEST＿40x60x5＿801 TEST 40x60x5＿802

 ¢08 $8^{-} \mathrm{x} 09 \mathrm{x} 0 \dagger^{-}$LSEL TEST＿40x60x5＿806 TEST＿40x60x5＿807

 $018^{-} \mathrm{Sx} 09 \times 0 \dagger^{-}$LSEL TEST＿40x60x5＿901 TEST＿40x60x5＿902

 TEST＿40x60x5＿906

 0
oे
n
0
0
0
0
\vdots
1
1
1 TEST＿40x60x5＿910
Legend:
Title: Title of the nonogram
W: With of the nonogram
H: Height of the nonogram
C: Number of colors of the nonogram
Dens.: Global density of the nonogram
H Blks: Number of horizontal blocks of the nonogram
V Blks: Number of vertical blocks of the nonogram
Cells logically solved: Number of cells determined after ly solving (fully or partially) the nonogram
Cells: Number of cells of the nonogram (typically W $\times \mathrm{H}$)
ILP state: Logically solved, ILP solved or ILP unsolved
. the hybrid, including the time spent logically solving it
Iterative Total Time: Total time spent solving the nonogram using the iterative approach, including the time spent logically solving it

B . Nonogram File Formats

B. 1 Bosch based file format

```
title: TEST_20x20x5_101
number_of_rows: 20
number_of_columns: 20
number_of_colors: 5
row_1:
number_of_clusters: 3
size(s): 1 1 1
color(s): 1 1 1
row_2:
number_of_clusters: 1
size(s): 1
color(s): 1
row_3:
number_of_clusters: 3
size(s): 1 3 1
color(s): 1 1 2
row_4:
number_of_clusters: 1
size(s): 1
color(s): 1
row_5:
number_of_clusters: 3
size(s): 1 1 1
color(s): 2 2 2
row_6:
number_of_clusters: 0
size(s):
color(s):
row_7:
```

54
number_of_clusters: ©
size(s):
color(s):
row_8:
number_of_clusters: 1
size(s): 1
color(s): 2
row_9:
number_of_clusters: 2
size(s): 11
color(s): 33
row_10:
number_of_clusters: 0
size(s):
color(s):
row_11:
number_of_clusters: 5
size(s): 11111
color(s): 33433
row_12:
number_of_clusters: 3
size(s): 111
color(s): 333
row_13:
number_of_clusters: 2
size(s): 11
color(s): 44
row_14:
number_of_clusters: 2
size(s): 11
color(s): 44
row_15:
number_of_clusters: 1
size(s): 1
color(s): 4
row_16:
number_of_clusters: 3
size(s): 121
color(s): 441
row_17:
number_of_clusters: 2
size(s): 11
color(s): 51
row_18:
number_of_clusters: 2
size(s): 11
color(s): 55
row_19:
number_of_clusters: 2
size(s): 11
color(s): 55
row_20:
number_of_clusters: 1
size(s): 1
color(s): 5
column_1:
number_of_clusters: 0
size(s):
color(s):
column_2:
number_of_clusters: 1
size(s): 1
color(s): 1
column_3:
number_of_clusters: 0
size(s):

$$
56
$$

color(s):
column_4:
number_of_clusters: 1
size(s): 1
color(s): 4
column_5:
number_of_clusters: 3
size(s): 211
color(s): 355
column_6:
number_of_clusters: 2
size(s): 11
color(s): 21
column_7:
number_of_clusters: 2
size(s): 11
color(s): 13
column_8:
number_of_clusters: 1
size(s): 2
color(s): 3
column_9:
number_of_clusters: 4
size(s): 1111
color(s): 1445
column_10:
number_of_clusters: 2
size(s): 11
color(s): 13
column_11:
number_of_clusters: 4
size(s): 1111
color(s): 1244
column_12:
number_of_clusters: 2
size(s): 21
color(s): 13
column_13:
number_of_clusters: 1
size(s): 1
color(s): 1
column_14:
number_of_clusters: 1
size(s): 1
color(s): 4
column_15:
number_of_clusters: 5
size(s): 11121
color(s): 13344
column_16:
number_of_clusters: 2
size(s): 11
color(s): 25
column_17:
number_of_clusters: 1
size(s): 1
color(s): 5
column_18:
number_of_clusters: 1
size(s): 1
color(s): 2
column_19:
number_of_clusters: 3
size(s): 111
color(s): 215

58

column_20:
number_of_clusters: 0
size(s):
color(s):

B. 2 Olšák file format

Title: TEST_20x20x5_101
\#d
a:a 1
b:b 2
c:c 3
d:d 4
e:e 5
: rows
1a 1a 1a
1a
1a 3a 1b
1a
1b 1b 1b

1b
1c 1c

1c 1c 1d 1c 1c
1c 1c 1c
1 d 1 d
1 d 1 d
1d
1d 2d 1a
1e 1a
1 e 1 e
1 e 1 e
1e
: columns
1a

1d

2c 1e 1e
1 b 1 a
1a 1c
2c
1a 1d 1d 1e
1a 1c
1a 1b 1d 1d
2a 1c
1a
1d
1a 1c 1c 2d 1d
1 b 1 e
1e
1b
$1 b$ 1a 1e
: end

B. 3 Hett based file format

```
specimen_nonogram('TEST_20x20x5_101',
[[[1, 1],[1, 1],[1,1]]
[[1, 1]]
[[1, 1],[3,1],[1, 2]]
[[1, 1]]
[[1,2],[1,2],[1,2]]
[]
[]
[[1,2]]
[[1,3],[1,3]]
[]
[[1, 3],[1, 3],[1,4],[1, 3],[1, 3]]
[[1,3],[1,3], [1,3]]
[[1,4],[1,4]]
[[1,4],[1,4]]
[[1,4]]
[[1,4],[2,4],[1, 1]]
[[1,5],[1,1]]
[[1,5],[1,5]]
[[1,5],[1,5]]
```

```
[[1,5]]
],
[[]
[[1,1]]
[]
[[1,4]]
[[2,3],[1,5],[1,5]]
[[1,2],[1,1]]
[[1,1],[1,3]]
[[2,3]]
[[1,1],[1,4],[1,4],[1,5]]
[[1,1],[1,3]]
[[1,1],[1,2],[1,4],[1,4]]
[[2,1],[1,3]]
[[1,1]]
[[1,4]]
[[1,1],[1,3],[1,3],[2,4],[1,4]]
[[1,2],[1,5]]
[[1,5]]
[[1,2]]
[[1,2],[1,1],[1,5]]
[]
]
).
```


Bibliography

[1] The eclipse constraint programming system. http://www.eclipse-clp.org/.
[2] Griddlers net. http://www.griddlers.net/.
[3] Ilog cplex. http://www.ilog.com/products/cplex/.
[4] Scip: Solving constraint integer programs. http://scip.zib.de/.
[5] Egon Balas and Robert Jeroslow. Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathematics, 23(1):61-69, 1972.
[6] Colin Barker. LPA Win-Prolog Goodies. http://pagesperso-orange.fr/colin. barker/lpa/lpa.htm.
[7] Robert A. Bosch. Painting by numbers. Optima, (65):16-17, May 2001. Also available here http://www.oberlin.edu/math/faculty/bosch/pbn.ps.
[8] Ali Corbin. Ali corbin's home page. http://www.blindchicken.com/~ali/.
[9] Brian Grainger. Pencil puzzles and sudoku. http://www.icpug.org.uk/national/ features/050424fe.htm.
[10] Werner Hett. Hett nonogram solver in prolog. https://prof.ti.bfh.ch/hew1/ informatik3/prolog/p-99/.
[11] Javier Larrosa and Enric Morancho. Solving 'still life' with soft constraints and bucket elimination. In Francesca Rossi, editor, Principles and Practice of Constraint Programming-CP 2003: 9th International Conference, CP 2003, Kinsale, Ireland, September 29-October 3, 2003 : Proceedings, pages 466-479, Kinsale, Ireland, 2003. Springer.
[12] Luís Mingote and Francisco Azevedo. Colored nonograms: an integer linear programming approach. In Lopes et al., editor, Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA 2009, Aveiro, Portugal, 2009. Springer.
[13] Mirek Olšák and Petr Olšák. Griddlers solver, nonogram solver. http://www.olsak. net/grid.html\#English.
[14] Joachim Schimpf. ECLiPSe Code Samples. http://eclipse.crosscoreop.com/ examples/.
[15] Steven Simpson. Nonogram programs. http://www.comp.lancs.ac.uk/~ss/ software/nonowimp/.
[16] Steven Simpson. Nonogram solver. http://www.comp.lancs.ac.uk/~ss/ nonogram/.
[17] Steven Simpson. Nonogram solver - solvers on the web. http://www. comp.lancs.ac. uk/~ss/nonogram/list-solvers.
[18] Jung-Fa Tsai, Ming-Hua Lin, and Yi-Chung Hu. Finding multiple solutions to general integer linear programs. European Journal of Operational Research, 184(2):802-809, 2008.
[19] Nobuhisa Ueda and Tadaaki Nagao. Np-completeness results for nonogram via parsimonious reductions. Technical Report TR96-0008, Tokyo Institute of Technology (Titech), Department of Computer Science, http://www.cs.titech.ac.jp/~tr/reports/ 1996/TR96-0008.ps.gz, May 1996.
[20] Wouter Wiggers. A comparison of a genetic algorithm and a depth first search algorithm applied to japanese nonograms. Paper, Faculty of EECMS, University of Twente, 2004.
[21] Wikipedia. Nonogram. http://en.wikipedia.org/wiki/Nonogram.
[22] Jan Wolter. The 'pbnsolve' paint-by-number puzzle solver. http://webpbn.com/ pbnsolve.html.
[23] Jan Wolter. Survey of paint-by-number puzzle solvers. http://webpbn.com/survey/.

[^0]: ${ }^{1}$ For the sake of simplicity, from this point forward, only lines will be mentioned, since the reasoning is the same for columns.

