
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

Solving Colored Nonograms

Luís Pedro Canas Ferreira Mingote
(aluno nº 29634)

2º Semestre de 2008/09
29 de Julho de 2009





Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado

Solving Colored Nonograms

Luís Pedro Canas Ferreira Mingote
(aluno nº 29634)

Orientador: Prof. Doutor Francisco de Azevedo

Trabalho apresentado no âmbito do Mestrado em Engen-
haria Informática, como requisito parcial para obtenção do
grau de Mestre em Engenharia Informática.

2º Semestre de 2008/09
29 de Julho de 2009





Acknowledgements

In advance, I would like to thank my wife Marta and my daughters Margarida and Matile
for all their support and patience during the time I spent with this work.

I also would like to thank Prof. Francisco de Azevedo for his time and orientation. I cannot
thank him enough for all the patience in reading, understanding and proposing improvements
to my writings.

I also would like to thank Prof. Paula Amaral, from the Mathematics Department, for mak-
ing available CPLEX for testing.

I would also like to thank all my family for their support.

v





Resumo

Nesta dissertação aprofundamos o estudo da resolução de nonogramas coloridos utilizando
Programação Linear Inteira (PLI). As formas conhecidas de resolução deste tipo de problemas
são a força-bruta, o método iterativo e PLI.

A nossa aproximação generaliza a utilizada por Robert A. Bosch desenvolvida para, apenas,
nonogramas a preto e branco, tornando assim disponível uma solução nova e universal para a
resolução de nonogramas utilizando PLI.

Sendo as implementações do método iterativo as que apresentam melhores resultados ao
nível do desempenho, desenvolvemos também um método híbrido que combina esta aproxi-
mação e PLI.

Estes puzzles têm, muitas vezes, várias soluções. A forma de as encontrar pelo modo iter-
ativo é uma pesquisa em árvore com retrocesso. De forma a encontrar as restantes soluções na
nossa aproximação aplicamos um algoritmo que utiliza um corte binário para excluir soluções
já conhecidas.

Para efeito de testes comparativos entre as diversas aproximações ao problema, desenvolve-
mos um gerador de nonogramas que permite definir a resolução do puzzle, o seu número de
cores e a densidade (número de células pintadas vs. resolução).

Finalmente comparamos o desempenho da nossa aproximação para resolver nonogramas
coloridos com o da aproximação interativa.

Palavras-chave: Nonograma, pintar-por-números, PLI, Programação Linear Inteira
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Abstract

In this thesis we deepen the study of colored nonogram solving using Integer Linear Pro-
gramming (ILP). The known methods for solving this kind of problems are the depth-first search
(brute-force) one, the iterative one and the ILP one.

Our approach generalizes the one used by Robert A. Bosch which was developed for black
and white nonograms only, thus providing a new universal solution for solving nonograms using
ILP.

Since the iterative implementations are the ones that present better performance results, we
also developed a hybrid method that combines this approach and the ILP one.

This puzzles often have more than one solution. The way to find them using the iterative
method e to make a tree search with backtracking. In order to find the remaining solutions using
our approach, is to apply an algorithm that uses a binary cut to exclude already known solutions.

In order to perform comparative tests between approaches, we developed a nonogram gen-
erator that allows us to define the resolution of the puzzle, its number of colors and its density
(number of painted cell vs. resolution).

Finally we compare the performance of our approach in solving colored nonograms against
the iterative one.

Keywords: Nonogram, paint-by-numbers, ILP, Integer Linear Programming
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1 . Introduction

1.1 Context

The work hereby presented was developed during the Master Program in Computer Sci-
ence Engineering (Bologna second cycle), under the original theme "Solving Problems from
CSPLib".

1.2 Problem Description

1.2.1 Initial problems

Initially, the purpose of this work was to solve problems from CSPLib (www.csplib.org), a
known library of problems for modeling and solving. Given the lack of knowledge about the
majority of the existing problems and our interest in exploring and solving new problems, thus
broadening our knowledge base, we decided to analyze the following five:

• prob012: Nonograms

• prob020: Darts tournament

• prob022: Bus driver scheduling

• prob032: Maximum density still life

• prob037: Peg solitaire

Although some work was done on problem "prob032 - Maximum density still life", specifi-
cally the implementation of the Bucket Elimination algorithm by [11], we decided to deepen the
study about problem "prob012 - Nonograms" since it appeared to us that there were approaches
that had not been explorer, specially to what concerns colored nonograms.

1.2.2 Nonograms

Nonograms are a popular kind of puzzle whose name varies from country to country, includ-
ing Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way that contiguous
blocks of the same color satisfy the clues, or restrictions, of each line or column.

According to Wikipedia [21], these kind of puzzles were created in 1987 by Non Ishida,
a Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the same
time and with no relation whatsoever. Soon after, nonograms started appearing in Japanese
puzzle magazines and later as electronic games. Today, magazines with nonogram puzzles are
published in several countries and are available as electronic games in a variety of platforms.

Ueda e Nagao prove in [19] that this problem is NP-Complete.
1
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1.2.2.1 Black and White Nonograms

In black and white nonograms the clues indicate the sequence of contiguous blocks of cells
to be filled (e.g. the clue 3,1,2 indicates that there is a block of 3 contiguous cells, followed
by a sequence of one or more empty cells, then a block of one cell filled, followed by another
sequence of one or more empty cells, finally followed by a sequence of two filled cells in that
row or column). Figure 1.1 shows an example of a black and white nonogram (unsolved, to the
left, solved, to the right).

Figure 1.1 Black and white nonogram example (unsolved: left, solved: right)

Known approaches to solving black and white nonograms are the depth-first search (brute-
force) one, the iterative one, the ILP one by Bosch [7] and a genetic algorithm by Wouter
Wiggers [20].

1.2.2.2 Colored Nonograms

In colored nonograms the clues are composed of pairs that indicate the size and color of
each sequence of blocks to be filled. For example, the clue <(3,Red), (1,Green), (2,Blue)>
indicates that there is a block of 3 contiguous cells of red, followed by a block of one green
cell separated or not by a sequence of empty cells, followed by a sequence of two blue cells
separated or not from the green block by a sequence of empty cells, in that row or column. The
general rule for separating blocks is that if a block is of the same color of the previous one in the
respective sequence then they must be separated by at least an empty cell. Otherwise (i.e., the
two blocks have different colors), they may have no cells in between, i.e., they may be adjoining
blocks. Note that in the particular case of black and white nonograms this means that blocks
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in a sequence must always be separated by at least one empty cell. Figure 1.2 represents an
example of a colored nonogram with 10 lines by 8 columns with 3 colors.

Figure 1.2 Colored Nonogram Example - "Fall" from [2]

1.3 Scope of work and main contributions

Within the scope of this work, colored nonograms were studied in order to develop an Integer
Linear Programming model for solving them. This model is based on the one provided by
Bosch in [7] for black and white nonograms and generalizes it so it can solve both black and
white and colored puzzles. Bosch’s file format was also adapted to colored nonograms and in
our implementation also supports lines with no clues.

Since the iterative approach is the one that presents the best results, according to Jan Wolter
in [23] and according to the tests we performed (shown ahead), we decided to build an hybrid
model that integrates both approaches.

In order to compare results of both our models and the iterative one, we built a nonogram
generator that can generate puzzles given a resolution (width × height), a number of colors and
a density (global or by color).

This allowed us to broaden the sample set used in comparing the different approaches to
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solving nonograms thus providing a deeper comparison between them with tests over several
instances of different dimensions and difficulty.

Our ILP approach was also enhanced in order to obtain more solutions to the same problem,
if applicable. This enhancement was accomplished by simplifying a known algorithm that finds
multiple solutions in order to make it more efficient to this specific problem.

In summary, the main contributions of this work are:

• An ILP model for solving colored nonograms;

• A nonogram instance generator;

• An hybrid implementation between the iterative approach and our ILP approach for col-
ored nonogram solving.

• A more systematic study of the different nonogram solving approaches

• An adaptation of an algorithm that obtains multiple solutions to an ILP problem, with a
simplification that makes it more efficient to specific problems

1.4 Document structure

This document is organized in the following way: In Chapter 2 nonograms (both black and
white and colored) are described in full and the best known approaches are detailed.

In Chapter 3 the ILP model we developed to solve colored nonograms is described, includ-
ing a demonstration that this model corresponds to the one by Bosch in [7] for black and white
nonograms. It is also shown how to apply a simple technique in order to find additional solu-
tions in case the first solution obtained for a puzzle is not unique. A description of the hybrid
approach between the iterative approach and the hereby presented ILP model is also described.

In Chapter 4 results from the presented solutions are compared to its iterative counterpart.
A description of the nonogram generator is also presented.

In Chapter 5 the results of the previous chapter are analyzed and the conclusions of this
work are presented. We also suggest some future work based on the one presented here.

In appendix A a table with the result of all tests is show.
in appendix B an example of each file format used is shown.



2 . Nonograms

In the previous chapter a brief description of nonograms was presented. In this one a more
detailed explanation about nonograms is shown.

Nonograms are a popular kind of puzzle whose name varies from country to country,
including Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way that
contiguous blocks of the same color satisfy the clues, or restrictions, of each line or column.

According to Wikipedia [21], these kind of puzzles were created in 1987 by Non Ishida,
a Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the same
time and with no relation whatsoever. Soon after, nonograms started appearing in Japanese
puzzle magazines and later as electronic games. Today, magazines with nonogram puzzles are
published in several countries and are available as electronic games in a variety of platforms.

The most common nonograms are black and white, but they exist also in colors. In fact,
black and white nonograms are a specialization of colored nonograms, i.e., are two colored
nonograms.

Also there is a different kind of nonogram — called triddlers — in which cells are triangles.
In this kind of puzzles we have three sets of clues instead of only two. These puzzles can also
exist in multiple colors.

Ueda e Nagao prove in [19] that the nonogram problem is NP-Complete.

2.1 Black and white Nonograms

In black and white nonograms the clues indicate the sequence of contiguous blocks of cells
to be filled (e.g. the clue 3,1,2 indicates that there is a block of 3 contiguous cells, followed
by a sequence of one or more empty cells, then a block of one cell filled, followed by another
sequence of one or more empty cells, finally followed by a sequence of two filled cells in that
row or column). Figure 1.1 shows an example of a black and white nonogram (unsolved, to the
left, solved, to the right).

According to Wikipedia [21], in order to solve this kind of puzzle it is necessary to
determine which cells will be filled (black) and which will be empty (white). Determining
which cells will be empty is as important as determining which will be filled because the former
will help delimiting the solutions for the blocks of each line or column1.

Simpler puzzles, like the one shown in figure 2.10, can usually be solved by applying the
following methods to each line at a time.

1For the sake of simplicity, from this point forward, only lines will be mentioned, since the reasoning is the
same for columns.

5
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Figure 2.1 Black and white nonogram example

2.1.1 Simple boxes

At the beginning of the solution, when there are no filled cells, for each block bi ∈ {b1, ...,bB} in
each row, the space available S (bi) for it is determined, assuming that the remaining blocks are
moved closer to the extremities of the grid as possible (previous blocks to the left and subsequent
block to the right). bi represents a set of filled cells in sequence (vector). The value for S (bi)
can be calculated using equation 2.5, where L represents the size of the line, B represents the
number of blocks on the line and T (bi) represents the size of bi.

S (bi) = L−B+ 1−
B∑

k,i

T (bk) (2.1)

It is also possible to know for each block what is the potential first cell that it can occupy
through equation 2.7, where bi[1] is block’s bi first cell position in the grid.

bi[1] =

{
1 ; i = 1
bi−1[1] + T (bi−1) + 1) ; i > 1 (2.2)

Within this set of cells it is possible to determine which subset is actually filled by analyzing
the extremities of the solution, i.e., sliding the block as far to the left as possible and then as
far to the right as possible and checking which cells are common to both solutions. In this way,
equation 2.3 gives the size of this sub-block, where T (si) is the size of the sub-block si that can
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be determined for block bi.

T (si) = 2T (bi)−S (bi) (2.3)

In the same way, it is possible to obtain the first cell (consequently the remaining) of this
sub-block through equation 2.4, where si[1] is the position of the first cell of sub-block si.

si[1] = bi[1] + S (bi)−T (bi) ; T (si) > 0 (2.4)

Figure 2.2 Example for the method Simple boxes in black and white nonograms

As an example, for the 10th line of the puzzle shown in figure 2.1, L = 10, B = 2, T (b1) = 7
and T (b2) = 1. Therefore the space available for the first block is S (b1) = 10− 2 + 1− 1 = 8
and S (b2) = 10−2 + 1−7 = 2. The leftmost indexes each can occupy are b1[1] = 1 and b2[1] =

1 + 7 + 1 = 9.
As for the sub-blocks of cells that can be filled at this point, T (s1) = 2× 7− 8 = 6 and

T (s2) = 2× 1− 2 = 0, i.e., it is not possible to fill, for now, any cell in respect to the second
block, but it is possible to fill six cells with respect to the first one. It is yet to determine the
starting cell of the first and second sub-blocks: s1[1] = 1 + 8−7 = 2, i.e., it is possible to fill, at
this point, cells 2 through 7 of that line.

Figure 2.2, from line 10 of the puzzle shown in figure 2.1, exemplifies this method for a size
10 line with with two blocks of sizes 7 and 1.

2.1.2 Punctuating

In order to solve the puzzle it is also very important to enclose with empty cells the extrem-
ities of each completed block, immediately, as described in the method Simple spaces. Precise
punctuating usually leads to more Forcing and can be vital to finishing the puzzle.

Figure 2.3 exemplifies this method for line 9 of puzzle shown in figure 2.1.



8

Figure 2.3 Example for the method Punctuating

2.1.3 Simple spaces

The purpose of this method is to find cells that can not be filled by any block due to the
constraints imposed by filled cells. For example, a block that is already complete may have at
least an empty cell to its left and at least another one to its right, unless it is adjacent to the
beginning or the end of the line.

Figure 2.4 from column 8 of the puzzle shown in figure 2.1 shows an example of this method.

Figure 2.4 Example 1 for the method Simple spaces applied to a black and white nonogram

In figure 2.5, based on one from Wikipedia, a more illustrative example of this method is
shown.

Figure 2.5 Example 2 for the method Simple spaces applied to a black and white nonogram

First, clue 1 is complete which means that there will be an empty cell to its left and another
to its right (Punctuating). Then, from clue 3 it is possible to conclude that its block can only
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expand between the second and the sixth cell because it has to include the fourth cell. This
means that cells 1 and 7 will be empty.

2.1.4 Mercury

Mercury is a special case of Simple spaces. The name comes from the way mercury pulls back
from the sides of a container.

If there is a filled cell on a line that is at the same distance from the border as the size of the
first block, then the first cell has to be empty. This is true because the first block would not fit
to the left of the filled cell. It will have to spread through that cell leaving the first cell behind.
Besides, when the cell is in reality a set with cells more to the right, there will be more spaces
at the beginning of the line, determined by applying this method several times.

In figure 2.6, from Wikipedia, an example of this method is shown.

Figure 2.6 Example for the method Mercury

2.1.5 Forcing

In this method the importance of empty cells is demonstrated. En empty cell in the middle of
an incomplete line can force a block to complete itself to one of the sides of the empty cell.

In figure 2.7, from line 8 of the puzzle shown in figure 2.1, an example of this method is
shown.

The first block (3) will have to be to the left of the first cell already marked as empty. The
empty one between the two cells already marked as empty cannot belong to any block from that
line which means it has to be empty. Finally, the second block will have to occupy a subset of
the last three cells of the line. Applying method Simple boxes to both blocks turns out to fill
cells 2, 3 and 9.
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Figure 2.7 Example for the method Forcing

2.1.6 Glue

In this method a full cell at the beginning (or the end) of the possible space for a block forces
the completion of that block to the empty side. In the same way, an empty cell in the middle of
the possible space for a block can condition the placement of that block’s cells.

In figure 2.8, from column 1 of the puzzle shown in figure 2.1, an example of this method
is shown.

Figure 2.8 Example for the method Glue

In this case, the filled cell in position 1 indicates that the size 5 block has to fill cells 1
through 5. Since the block becomes complete, we mark cell 6 of that column as empty through
method punctuating.

2.1.7 Joining and splitting

Filled cells nearby one another can be united or separated according with the number and size
of that line’s blocks. In this case the whole line has to be analyzed together with the information
available for every block.

In figure 2.9, from Wikipedia, an example of this method is shown.
The clue of 5 will join the first two blocks into one large block because a space would

produce a block of only 4 cells. Cell 7 will have to be empty, otherwise a 3 size block would
form which is not indicated for that line. In this case, the size 2 blocks will also complete,
however that is a result of applying the Glue method described earlier.

Using these methods we can easily solve these more simple puzzles. Figures 2.10(a) through
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Figure 2.9 Example for the method Joining and splitting applied to a black and white nonogram

2.11 show the two horizontal iterations and the vertical one made in order to solve the puzzle
shown in figure 2.1.

(a) After first horizontal iteration (b) After first vertical iteration

Figure 2.10 Solving a black and white Nonogram Example

2.2 Colored Nonograms

In colored nonograms the clues are composed of pairs that indicate the size and color of
each sequence of blocks to be filled. For example, the clue <(3,Red), (1,Green), (2,Blue)>
indicates that there is a block of 3 contiguous cells of red, followed by a block of one green
cell separated or not by a sequence of empty cells, followed by a sequence of two blue cells
separated or not from the green block by a sequence of empty cells, in that row or column. The
general rule for separating blocks is that if a block is of the same color of the previous one in the
respective sequence then they must be separated by at least an empty cell. Otherwise (i.e., the
two blocks have different colors), they may have no cells in between, i.e., they may be adjoining
blocks. Note that in the particular case of black and white nonograms this means that blocks
in a sequence must always be separated by at least one empty cell. Figure 1.2 represents an
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Figure 2.11 Solving a black and white Nonogram Example — after last (horizontal) iteration

example of a colored nonogram with 10 lines by 8 columns with 3 colors.
In the same way as black and white nonograms, in order to solve this kind of puzzle it

is necessary to determine which cells will be filled (colored) and which will be empty (white).
Determining which cells will be empty is as important as determining which will be filled
because the former will help delimiting the solutions for the blocks of each line or column.

As referred earlier, black and white nonograms are a special case of colored nonograms (are
two colored nonograms). In that way, the same methods, with some nuances, can be applied to
colored nonograms, each line at a time, in order to solve them.

These methods are explained again, but now applied to colored nonograms.

2.2.1 Simple boxes

At the beginning of the solution, when there are no filled cells, for each block bi ∈ {b1, ...,bB} in
each row, the space available S (bi) for it is determined, assuming that the remaining blocks are
moved closer to the extremities of the grid as possible (previous blocks to the left and subsequent
block to the right). bi represents a set of filled cells in sequence (vector). The value for S (bi)
can be calculated using equation 2.5, where L represents the size of the line, P represents the
number of pairs of contiguous blocks of the same color on the line and T (bi) represents the size
of bi.

S (bi) = L−P−
B∑

k,i

T (bk) (2.5)

For black and white nonograms equation 2.5 becomes equation 2.1 where B represents the
number of block on the line.
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It is also possible to know for each block what is the potential first cell that it can occupy
through equation 2.7, where bi[1] is block’s bi first cell position in the grid and f is a function
that returns 1 if the blocks are of the same color and 0 otherwise (see equation 2.6 where Cbi is
the color of block i).

f (bi,b j) =

{
0 ; Cbi ,Cb j

1 ; Cbi = Cb j
(2.6)

bi[1] =

{
1 ; i = 1
bi−1[1] + T (bi−1) + f (bi,bi−1) ; i > 1 (2.7)

For black and white nonograms f always returns 1 and equation 2.7 becomes equation 2.2.
Within this set of cells it is possible to determine which subset is actually filled by analyzing

the extremities of the solution, i.e., sliding the block as far to the left as possible and then as
far to the right as possible and checking which cells are common to both solutions. In this way,
equation 2.8 gives the size of this sub-block, where T (si) is the size of the sub-block si that can
be determined for block bi.

T (si) = 2T (bi)−S (bi) (2.8)

In the same way, it is possible to obtain the first cell (consequently the remaining) of this
sub-block through equation 2.9, where si[1] is the position of the first cell of sub-block si.

si[1] = bi[1] + S (bi)−T (bi) ; T (si) > 0 (2.9)

Figure 2.12 Example 1 for the method Simple boxes

As an example, for the fourth line of the puzzle shown in figure 1.2, L = 8, P = 0, B = 4,
T (b1) = 3, T (b2) = 2, T (b3) = 1 and T (b4) = 1. Therefore the space available for the first block
is S (b1) = 8− 0− 4 = 4, S (b2) = 8− 0− 5 = 3, S (b3) = 8− 0− 6 = 2 and S (b4) = 8− 0− 6 = 2.
The leftmost indexes each can occupy are b1[1] = 1, b2[1] = 1 + 3 + 0 = 4, b3[1] = 4 + 2 + 0 = 6
and b4[1] = 6 + 1 + 0 = 7.

As for the sub-blocks of cells that can be filled at this point, T (s1) = 2× 3− 4 = 2, T (s2) =

2×2−3 = 1, T (s3) = 2×1−2 = 0 and T (s4) = 2×1−2 = 0, i.e., it is not possible to fill, for now,
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any cell in respect to the third and fourth blocks, but it is possible to fill two cells with respect
to the first one and one cell with respect to the second one. It is yet to determine the starting
cell of the first and second sub-blocks: s1[1] = 1 + 4−3 = 2 and s2[1] = 4 + 3−2 = 5., i.e., it is
possible to fill, at this point, cells 2, 3 and 5 of that line.

2.2.2 Punctuating

In order to solve the puzzle it is also very important to enclose with empty cells the ex-
tremities of each completed block that is the same color as the adjacent one, immediately, as
described in the method Simple spaces. Precise punctuating usually leads to more Forcing and
can be vital to finishing the puzzle.

Figure 2.13 exemplifies this method for line line 6 of puzzle shown in figure 1.2.

Figure 2.13 Example for the method Punctuating

2.2.3 Simple spaces

The purpose of this method is to find cells that can not be filled by any block due to the
constraints imposed by filled cells. For example, a block that is already complete may have at
least an empty cell to its left and at least another one to its right, unless it is adjacent to the
beginning or the end of the line.

Figure 2.14 from line 2 of the puzzle shown in figure 1.2 shows an example of this method.

Figure 2.14 Example 1 for the method Simple spaces
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In figure 2.15, based on one from Wikipedia, a more illustrative example of this method is
shown.

Figure 2.15 Example 2 for the method Simple spaces

First, clue 1 is complete which means that there will be an empty cell to its left and another
to its right (Punctuating). Then, from clue 3 it is possible to conclude that its block can only
expand between the second and the sixth cell because it has to include the fourth cell. This
means that cells 1 and 7 will be empty.

2.2.4 Mercury

Mercury is a special case of Simple spaces. The name comes from the way mercury pulls
back from the sides of a container.

If there is a filled cell on a line that is at the same distance from the border as the size of the
first block, then the first cell has to be empty. This is true because the first block would not fit
to the left of the filled cell. It will have to spread through that cell leaving the first cell behind.
Besides, when the cell is in reality a set with cells more to the right, there will be more spaces
at the beginning of the line, determined by applying this method several times.

In figure 2.16, from line 1 of the puzzle shown in figure 1.2, an example of this method is
shown.

Figure 2.16 Example for the method Mercury
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2.2.5 Forcing

In this method the importance of empty cells is demonstrated. En empty cell in the middle
of an incomplete line can force a block to complete itself to one of the sides of the empty cell.

In figure 2.17, base on the one from Wikipedia, an example of this method is shown.

Figure 2.17 Example for the method Forcing

The first block (3) will have to be to the left of the first cell already marked as empty. The
empty one between the two cells already marked as empty cannot belong to any block from that
line which means it has to be empty. Finally, the second block will have to occupy a subset of
the last three cells of the line. Applying method Simple boxes to both blocks turns out to fill
cells 2, 3 and 9.

2.2.6 Glue

In this method a full cell at the beginning (or the end) of the possible space for a block forces
the completion of that block to the empty side. In the same way, an empty cell in the middle of
the possible space for a block can condition the placement of that block’s cells.

In figure 2.18, from column 5 of the puzzle shown in figure 1.2, an example of this method
is shown.

Figure 2.18 Example for the method Glue

In this case, filled brown cell in position 4 preceded by filled green cell in position 3 indicates
that the size 7 brown block has to fill cells 5 through 10.
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2.2.7 Joining and splitting

Filled cells nearby one another can be united or separated according with the number and
size of that line’s blocks. In this case the whole line has to be analyzed together with the
information available for every block.

In figure 2.19, from column 2 of the puzzle shown in figure 1.2, an example of this method
is shown.

Figure 2.19 Example for the method Joining and splitting

The clue to the size 3 green block will make that the two green cells unite because a space
in cell 2 would divide the first block in two.

Using these methods one can easily solve these more simple puzzles. Figures 2.20(a)
through 2.22 show the three horizontal iterations and the two vertical ones made in order to
solve the puzzle shown in figure 1.2.

(a) After first horizontal iteration (b) After first vertical iteration

Figure 2.20 Solving a Colored Nonogram Example — "Fall" from [2]
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(a) After second horizontal iteration (b) After second vertical iteration

Figure 2.21 Solving a Colored Nonogram Example — "Fall" from [2]

2.3 Approaches to solving Nonograms

In the previous section we showed how simpler puzzles can be solved by looking at each
line at a time and applying one or more methods to color cells or mark them as spaces. For more
complex puzzles we can reach a state where we can not fill more unknown cells by applying
those methods. At that point we have to try and guess a value (color or space) for a cell and then
reapply the aforementioned methods to try to reach a solution or a contradiction. Eventually
we will reach another state where another guess must be made to continue to try to solve the
puzzle, and so on. If a contradiction is reached, then the value we chose for a determined cell is
wrong. In black and white puzzles this means that the cell will have the opposite value (empty
if the chosen value was filled, filled otherwise), but in colored nonograms another color can be
chosen for that cell. These more complex puzzles are usually difficult to solve by a human.

This is where computer based approaches can be useful.

Known approaches for solving nonograms are the depth-first search (brute-force), the it-
erative approach and the ILP approach. A comparison between a genetic algorithm and the
depth-first search algorithm, by Wouter Wiggers [20], was also found. As mentioned in the
article, the genetic algorithm not always reaches a solution, however it reaches a near solution
very quickly.



19

Figure 2.22 Solving a Colored Nonogram Example — "Fall" from [2] — After final (horizontal) itera-
tion

2.3.1 Depth-first search (brute-force)

This approach tries all possible combinations for the set of blocks of each line. For example,
for a size 10 line, belonging to a black and white nonogram, with two blocks of sizes 5 and 1,
we would have 10 possibilities only for that line, as shown in figure 2.23.

An optimization of this algorithm is to begin with the lines that have fewer possibilities.
However, if we want to find all solutions then all possibilities must be explored.

The following are implementations of this approach:

• ECLIPSE program by Joachim Schimpf [14]

• P-99: Ninety-Nine Prolog Problems [10]

• Colin Barker’s Home Page - LPA Win-Prolog Goodies [6]

These implementations only work for black and white nonograms.

2.3.2 Iterative approach

The iterative technique consists in determining, for every line, cyclically, which cells can
be considered filled and which cells can be considered empty, in accordance to the information
available at the moment, until a solution is reached or no more cells can be determined.

To find this information an algorithm is applied to each line at a time. This algorithm is
called a line-solver. A line-solver is an algorithm that given a single line (row or column), and
the state of that line so far, tries to figure out what additional cells can be marked.
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Figure 2.23 Depth-first search — all possibilities for a line

When the successive application of the line-solver stops contributing to the puzzle’s resolu-
tion, the search for contradictions can help.

This method includes:

1. Forcing an unknown cell to be empty or full;

2. Reapply the methods mentioned in order to find a solution;

3. If a contradiction is found then the value chosen for that cell was not the correct on
and another cell must be tried, or another value must be tried for that cell (chronologic
backtracking).

The problem to this method is the choice of a cell to try a contradiction, i.e., having an
heuristic to find the best cells to try a value. Besides, while trying a cell for a contradiction
another situation may arise in that another try to find a contradiction must take place, and so
forth.

Usually, the best cells to initiate a contradiction try are the following:

• Cells that have many filled neighbors;

• Cells near the border or nearby sets of empty cells;

• Cells that are between lines that consist of more empty cells.

Steven Simpson, in his site [16], describes his algorithm for the resolution of nonograms.
As mentioned above, the algorithm tries to solve, or partially solve, a line for each iteration.
The order in which lines are tried to be solved is defined by the value of equation 2.10, Where
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B is the number of blocks of that line, L is the size of the line and T (b1) to T (bB) are the sizes of
each block. When non-negative, the result is the number of filled cells that can be determined
from an empty line. A negative value indicates a shortfall of pre-determined cells. Note that
when B = 1 and T (bi) = L then I = L and this is the maximum value.

I = (B+ 1)
B∑

i=1

T (bi) + B(B−L−1) (2.10)

Exceptionally, if B = 0 (empty line) then I = L.
After a line is chosen a line-solver, or a sequence of line-solvers, are applied to it in order to

fill as many cells as possible. The line-solvers are applied to the line in a predefined rank order,
i.e, higher ranked line-solvers are only applied after lower ranked ones don’t reveal more cells.
There are four well-known line-solvers: fast, complete, olsak [13] and fcomp. The first gets
most of the available information available; the second gets everything logically deductible, but
is very inefficient; the third is a variation of the first one, but is a little more exhaustive and gets
all the information; the fourth is a revised version of the second one, but is significantly more
efficient.

In [23], Jan Wolter compares several nonogram solvers in which the best three (Wolter’s
pbnsolve [22], Simpson’s nonogram [15] and Olšák’s grid [13]) use one or more of these line-
solvers. Simpson’ is the only that does not solve colored nonograms.

2.3.3 Integer Linear Programming approach

Robert A. Bosch [7] presented in 2001 a solution based on Integer Linear Programming
as well as the code that converts the definition of a puzzle in a program that can be used with
CPLEX [3] to solve the puzzle.

The mentioned program only works for puzzles that have clues for all the lines.
Since this approach only solves black and white nonograms we proposed to develop an ILP

model that solves colored nonograms.
The performance results of our approach compared to an adaptation for colored nonograms

of the depth-first search provided by Hett [10], an adapted version of the optimized depth-first
search approach also by Hett and Olšák’s grid are shown in table 2.1.

The times were measured on a 2.4 GHz Intel© Centrino© vPro™with 2 GB of RAM running
Microsoft© Windows©. The Prolog program was run in ECLiPSe [1] and the generated ILP
problems were run on SCIP [4]. Results are shown in table 4.1, where NPC stands for "Number
of Painted Cells".

Given the good performance of the iterative approaches we also proposed to develop a hy-
brid model between this approach and the ILP one.

The ILP approach presented here starts from scratch with an empty grid and, in general,
could not improve the Iterative method for the available tests, although already presented similar
results using a non commercial tool.



22

Table 2.1 Experimental Results (in seconds)

Puzzle R×C×Col NPC Brute-force (Prolog) Brute-force opt (Prolog) Iterative ILP
Fall 10x8x3 47 1,050.70 0.03 0.07 0.03
Fish 16x16x2 164 (too long) 0.08 0.07 0.21
AtoZ 16x16x2 50 (too long) 0.92 0.10 23.04
Time 35x30x5 520 (too long) (out of memory) 0.21 3.51

Our initial idea when developing the ILP model, in addition to the new theoretical results,
was to use it together with the Iterative method, which we knew was efficient to quickly fill many
cells of the grid using simple inferences on the rows and columns clues. That is precisely what
we proposed to develop, by applying the ILP model only after the Iterative technique already
filled many cells, thus reducing a lot the model complexity by converting many variables to
constants.

Both Simpson and Wolter have references to other nonogram solvers in [17] and [23], re-
spectively.



3 . An ILP model for solving Colored Nonograms

In the previous chapter we verified that no ILP model for solving colored nonograms exists.
In this chapter we describe the model we developed for this purpose.

3.1 Model Description

As in [7], our approach is to think of a colored nonogram as a problem comprised of two
interlocking tiling problems: one involving the placement of the row blocks, and the other
involving the placement of the column blocks. If a cell is painted (it can be assumed that
unpainted cells are painted white) then it must be covered by both a row block and a column
block; if it is painted white (not painted) then it must be left uncovered by the row blocks and
the column blocks.

3.1.1 Notation

The notation used here is similar to the one used by Bosch in [7], as follows.

m = the number of rows,

n = the number of columns,

o = the number of colors excluding white (We use a sequence of natural numbers to
identify colors, starting at 1 (1,2, . . . ,o).),

br
i = the number of blocks in row i, 1 ≤ i ≤ m,

bc
j = the number of blocks in column j, 1 ≤ j ≤ n,

sr
i,1, s

r
i,2, . . . , s

r
i,br

i
= the block-size sequence for row i,

sc
j,1, s

c
j,2, . . . , s

c
j,bc

j
= the block-size sequence for column j,

cr
i,1,c

r
i,2, . . . ,c

r
i,br

i
= the block-color sequence for row i,

cc
j,1,c

c
j,2, . . . ,c

c
j,bc

j
= the block-color sequence for column j.

In addition, let

er
i,t = the smallest value of j such that row i’s tth block can be placed in row i with its

leftmost pixel occupying cell j,
23
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lri,t = the largest value of j such that row i’s tth block can be placed in row i with its
leftmost pixel occupying cell j,

ec
j,t = the smallest value of i such that column j’s tth block can be placed in column j with

its topmost pixel occupying cell i,

lci,t = the largest value of i such that column j’s tth block can be placed in column j with
its topmost pixel occupying cell i.

These are constants valid for the empty puzzle. (The letters "e" and "l" stand for "earliest"
and "latest"). In our example puzzle, the second row’s first block must be placed so that its
leftmost pixel occupies cell 1 or 2, the second block must be placed so that its leftmost pixel
occupies cell 5 or 6, and the third block must be placed so that its leftmost pixel occupies cell 6
or 7. In other words

er
2,1 = 1, lr2,1 = 2,er

2,2 = 5, lr2,2 = 6,er
2,3 = 6 and lr2,3 = 7.

These values are obtained by iteratively placing the blocks in their leftmost or topmost
possible cells and then placing them in their rightmost or bottommost possible cells. In our
example, the first block’s first cell is 1 and, since the first block’s size is 4 and the color of both
blocks is different, the second block’s first possible cell is 5. Then, since the color of the third
block is also different from the second one and the size of the second block is 1, the third block’s
first possible cell is 6. Now, the third block is pushed to its rightmost cell (7) and one finds out
that the second block’s last possible cell is 6 and the first block’s last possible cell is 2.

Note that the rules for determining these values are the same for colored or black and white
nonograms. Of course, in black and white puzzles all the blocks are of the same color, which
means they have to be separated by at least one empty cell.

3.1.2 Variables

As in the approach by Bosch in [7], in our approach there are three sets of variables. One set
specifies the color of each cell:

∀1≤i≤m,1≤ j≤n zi, j =


1 ≤ c ≤ o ; if row i’s jth cell is painted

with color c
0 ; if row i’s jth cell is not

painted

(3.1)

The other two sets of variables are concerned with placements of the row and column blocks.

∀1≤i≤m,1≤t≤br
i ,e

r
i,t≤ j≤lri,t

yi,t, j =


1

; if row i’s tth block is placed
in row i with its leftmost pixel
occupying cell j

0 ; if not

(3.2)
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∀1≤ j≤n,1≤t≤bc
j,e

c
j,t≤i≤lcj,t

x j,t,i =


1

; if column j’s tth block is
placed in column j with its
topmost pixel occupying cell
i

0 ; if not

(3.3)

3.1.3 Block constraints

To ensure that row i’s tth block appears in row i exactly once, the following imposes

∀1≤i≤m,1≤t≤br
i

lri,t∑
j=er

i,t

yi,t, j = 1 (3.4)

For line 2 of our example we have

y2,1,1 + y2,1,2 = 1,

y2,2,5 + y2,2,6 = 1,

y2,3,6 + y2,3,7 = 1.

For the next two constraints the auxiliary function (3.5) is defined. This function, which
was already defined as equation 2.6 in chapter 1, returns the value 1 if the two arguments are
the same, and 0 otherwise, which will be useful to compare colors of two contiguous blocks.

eq(c1,c2) =

{
1 ; if c1 = c2
0 ; otherwise (3.5)

To ensure that row i’s (t + 1)th block is placed to the right of its tth block, the following
imposes

∀er
i,t+1≤ j≤lri,t

yi,t, j ≤

lri,t+1∑
j′= j+sr

i,t+eq(cr
i,t,c

r
i,t+1)

yi,t+1, j′ (3.6)

In line 2 of our example we have

y2,1,2 ≤ y2,2,6,

y2,2,6 ≤ y2,3,7.

To ensure that column j’s tth block appears in column j exactly once, the following imposes
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∀1≤ j≤n,1≤t≤bc
j

lcj,t∑
i=ec

j,t

x j,t,i = 1 (3.7)

To ensure that column j’s (t + 1)th block is placed under its tth block, the following imposes

∀ec
j,t+1≤i≤lcj,t

x j,t,i ≤

lcj,t+1∑
i′=i+sc

j,t+eq(cc
j,t,c

c
j,t+1)

x j,t+1,i′ (3.8)

3.1.4 Double Coverage Constraints

To guarantee that each painted cell is covered by both a row block and a column block, the
following pair of inequalities imposes:

∀1≤i≤m,1≤ j≤n zi, j ≤

br
i∑

t=1

min{lri,t, j}∑
j′=max{er

i,t, j−sr
i,t+1}

yi,t, j′ × cr
i,t (3.9)

∀1≤i≤m,1≤ j≤n zi, j ≤

bc
j∑

t=1

min{lcj,t,i}∑
i′=max{ec

j,t,i−sc
j,t+1}

x j,t,i′ × cc
j,t (3.10)

Without these restrictions the model would allow having cells painted by row blocks, but
not painted by any column block, or vice versa. The first inequality (3.9) states that if row i’s
jth cell is painted, then at least one of row i’s blocks must be placed in such a way that it covers
row i’s jth cell. (The upper and lower limits of the second summation make sure that j′ satisfies
the two pairs of inequalities er

i,t ≤ j′ ≤ lri,t and j− sr
i,t + 1 ≤ j′ ≤ j. The first pair holds if, and

only if, row i’s tth cell is covered when row i’s tth block is placed in row i with its leftmost pixel
occupying cell j′. The second pair holds if and only if row i’s jth pixel is covered when row
i’s tth block is placed in row i with its leftmost pixel occupying pixel j′). The other inequality
(3.10) makes sure that if row i’s jth cell is painted, then at least one of column j’s blocks covers
it. For line 2 of our example we have for cell z2,4 that

z2,5 ≤ y2,1,2× cr
2,1 + y2,2,5× cr

2,2,

z2,5 ≤ x5,1,1× cc
5,1 + x5,1,2× cc

5,1

If z2,5 is painted, the right hand terms of these inequalities will yield exactly its color value
in a solved puzzle. Otherwise (empty cell), the terms hold value 0. Ideally, the model should
express this disjunction directly, allowing only those 2 values. However, in order to allow ILP
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solving, it is kept as a linear inequality. Nevertheless, below it is proven that this is sufficient
for a correct and complete model, in the presence of the other constraints.

Finally, constraints that prevent unpainted cells from being covered by the row blocks or
column blocks are included — inequalities (3.11) and (3.12).

∀1≤i≤m, 1≤ j≤n, 1≤t≤br
i , j−sr

i,t+1≤ j′≤ j, er
i,t≤ j′≤lri,t

zi, j ≥ yi,t, j′ × cr
i,t (3.11)

∀1≤i≤m, 1≤ j≤n, 1≤t≤bc
j, ec

j,t≤i′≤lcj,t, i−sc
j,t+1≤i′≤i zi, j ≥ x j,t,i′ × cc

j,t (3.12)

In line 2 of our example we have

z2,5 ≥ y2,1,2× cr
2,1, z2,5 ≥ y2,2,5× cr

2,2,

z2,5 ≥ x5,1,1× cc
5,1, z2,5 ≥ x5,1,2× cc

5,1.

One might think that it is necessary to ensure that each painted cell must be covered by one
row block and one column block of the same color. However, the remaining constraints ensure
that there is only the need to guarantee that a painted cell must be covered by one row block and
one column block. In order to prove it, let us explore all the possibilities regarding the coverage
of some cell z:

1. No block covers cell z;

2. Only one block covers cell z and it is of the same color;

3. Only one block covers cell z and its color is smaller than the color of z;

4. Only one block covers cell z and its color is greater than the color of z;

5. More than one block covers cell z;

Of these five possibilities, only the first two are possible in real puzzles. The last three are
the ones that our model has to avoid.

In sake of simplicity, but with no loss of generality, only inequality (3.9), for lines, of the
double coverage constraints will be used in our case analysis for these five possibilities:

Possibility 1: The only way to satisfy this possibility is with an empty cell z, with value 0,
which, by inequality (3.9), will guarantee that no block covers it (forcing the respective yi,t, j′

variables to be 0), i.e.

br
i∑

t=1

max{lri,t, j}∑
j′=min{er

i,t, j−sr
i,t+1}

yi,t, j′ × cr
i,t = 0.
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Possibility 2: This possibility fully satisfies inequality (3.9), corresponding to the equality of
both terms.

Possibility 3: If a single block of smaller color than the color of cell z covers it then inequality
(3.9) is not satisfied, thus disallowing such possibility, as desired.

Possibility 4: In the case that there may be one block that covers cell z, and which color is
greater than the color of z, then inequality (3.9) would be satisfied. However, this would violate
inequality (3.11) thus turning the solution invalid.

Possibility 5: If more than one block covers cell z, inequality (3.9) could only be satisfied if
the sum of the colors of the covering blocks is less than or equal to the color of cell z. But this
would violate equation (3.4) thus turning the solution invalid.

3.1.5 Objective Function

Since this is a satisfaction problem there is no need for an objective function, but since ILP
solvers need one, the following is included (note that this function is a constant and we already
know its value):

minimize/maximize
m∑

i=1

n∑
j=1

zi, j (3.13)

3.1.6 Pre-conditions

We also include in our approach one pre-condition in order to verify whether the puzzle is
trivially impossible to solve, before even trying to search for a solution (another improvement
with respect to [7]). This is a necessary, but not sufficient condition that will save the time of
trying to solve a puzzle that is impossible, and that also helps determining whether there is any
error in the definition of the puzzle. This condition, shown by equation (3.14), checks whether
the sum of the sizes of all blocks of each color is the same for both the rows and columns clues.

∀c∈{1..o}

m∑
i=1

br
i∑

t=1

f (sr
i,t,c

r
i,t,c) =

n∑
j=1

bc
j∑

t=1

f (sc
j,t,c

c
j,t,c) (3.14)

where f (s,c1,c2) = s if c1 = c2, and 0 otherwise.
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3.2 Instantiation to Black and White Nonograms

If o is set to 1 (o = 1), thus allowing only black and white in a puzzle, our model becomes the
one provided by Bosch in [7], i.e., equation (3.1) becomes

zi, j =

{
1 ; if row i’s jth cell is painted
0 ; if row i’s jth cell is not painted

(3.15)

Equations (3.2) and (3.3) are kept from the approach provided by Bosch. Equation (3.4)
is equal to the one in the approach by Bosch, but inequality (3.6) was extended so block t + 1
can follow block t immediately, due to possible contiguous blocks of different colors. For black
and white puzzles it corresponds exactly to the formulation in [7] since all blocks have the same
color which leads the eq function to always yield value 1. Inequalities (3.7) and (3.8) are similar,
but regard columns. Finally, since the only possible color takes value 1, the double coverage
constraints set by inequalities (3.9) and (3.10) become

∀1≤i≤m,1≤ j≤n zi, j ≤

br
i∑

t=1

min{lri,t, j}∑
j′=max{er

i,t, j−sr
i,t+1}

yi,t, j′ , (3.16)

∀1≤i≤m,1≤ j≤n zi, j ≤

bc
j∑

t=1

min{lcj,t,i}∑
i′=max{ec

j,t,i−sc
j,t+1}

x j,t,i′ , (3.17)

∀1≤i≤m,1≤ j≤n,1≤t≤br
i , j−sr

i,t+1≤ j′≤ j,er
i,t≤ j′≤lri,t

zi, j ≥ yi,t, j′ (3.18)

and

∀1≤i≤m,1≤ j≤n,1≤t≤bc
j,e

c
j,t≤i′≤lcj,t,i−sc

j,t+1≤i′≤i zi, j ≥ x j,t,i′ (3.19)

as in [7] (where the min and max functions are incorrectly swapped in the summation limits).

3.3 Finding Multiple Solutions

The described ILP model allows finding a single solution to a puzzle, which actually is the best
one, although in this case all solutions are alike since the optimizing function is a constant.

Nonograms are satisfaction problems, which in ILP must be modeled as optimization prob-
lems. Since it is possible that the obtained solution is not unique, we also try to find additional
solutions to a puzzle. For that, the algorithm developed by Jung-Fa Tsai et al. described in [18]
was first considered. This algorithm uses an integer cut to exclude the previously found solu-
tion, extending the ILP model to a Mixed ILP model (MILP), which is the general approach to
finding additional solutions in ILP. But, in fact, a much simpler approach was used by applying
a binary cut similar to the one proposed by Balas and Jeroslow in [5].
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Since our binary variables (either yi,t, j or x j,t,i) are enough to provide the solution (they
completely determine the filled puzzle, since clues are constant), a binary cut is enough.

The cut that needed to be applied to exclude an existing solution is shown in (3.20) using
the y set of variables (the x set of variables could also be used).

∑
(i,t, j)∈A

yi,t, j−
∑

(i,t, j)∈B

yi,t, j ≤ |A| −1,
A = {(i, t, j) | yi,t, j = 1},
B = {(i, t, j) | yi,t, j = 0} (3.20)

Basically, after finding a solution to the problem, the constraints in inequality (3.20) are
added to the problem and another try is made to find another solution.

3.4 Hybrid model

The hybrid model we propose here basically consists in substituting the search part of the iter-
ative approach by our ILP model.

At first, the puzzle is logically solved, i.e., one or more line-solvers are applied to every line
of the puzzle, repeatedly, until there is no more information that can be inferred. Then, if the
puzzle is not completely solved, the ILP model is instantiated.

Our implementation generates a CPLEX LP file (.lp) that represents the current state of the
puzzle according to the model presented in section 3.1. This approach is more flexible than
generating the ILP model specifically for a solver like SCIP [4] or CPLEX [3] because it allows
the comparison of results between different ILP solvers.

SCIP is currently one of the fastest non-commercial mixed integer programming (MIP)
solver. ILOG CPLEX©is a commercial mathematical programming optimizer that, among
other things, solves mixed integer programs. Although SCIP is advertised as the best performing
non-commercial MIP solver, CPLEX — the best MIP solver — is five times faster.

The process of instantiating our ILP model, and subsequently generating the LP file, en-
volves the following steps:

• Compute earliest and latest constants

• Write objective function to file

• Write block constraints to file

• Write double coverage constraints to file

• Write bounds to file: here is where the partial solution found by the iterative approach is
inserted in the ILP model

• Write all the variables to file
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Since among the best performing implementations of the iterative approach only pbnsolve
and Olšák’s (grid) can solve colored nonograms, we decided to adapt pbnsolve into our hybrid
approach. The reason we did not choose grid was that the program code comments are in
Czech. On the other hand, pbnsolve’s code comments are very complete and understandable.
Steven Simpson’s nonogram [16] can not solve colored nonograms.

Also, for testing purposes, we did not implement Balas and Jeroslow’s binary cut in this
approach.





4 . Results

In the previous chapter our ILP model for solving colored nonograms was described. We
also described an hybrid approach to solving colored nonograms between the iterative and the
ILP ones.

Here, we present the results of the performance tests we ran in order to compare the different
approaches to solving colored nonograms.

First we present the results between our pure ILP approach and the iterative and the depth-
first search ones. Then we show the results obtained by comparing our hybrid approach and the
iterative one.

4.1 Pure ILP approach

In order to test the performance of the model described in Chapter 3 (without the use of
Balas and Jeroslow’s algorithm) it was tested against three algorithms: one adaptation (the
original program solves only black and white nonograms) of an implementation in Prolog of a
brute force search by Werner Hett [10], an optimized variant of this implementation (by altering
the ordering of the line tasks) and an implementation in C of the iterative approach by Mirek
Olšák and Petr Olšák available in [13].

Four puzzles were used for the purpose of these tests: the "Fall" puzzle from Griddlers.net
[2] (10x8x3, i.e. a 10 by 8 grid with 3 colors) used as an example in this dissertation (figure
1.2), the "Fish" and the "AtoZ" puzzles (16x16x2) from Ali Corbin’s web page [8], and the
"Time" adapted from the copyrighted Sunday Telegraph & Aenigma Design and colored by
Brian Grainger (35x30x5) [9].

The times were measured on a 2.4 GHz Intel© Centrino© vPro™with 2 GB of RAM running
Microsoft© Windows©. The Prolog program was run in ECLiPSe [1] and the generated ILP
problems were run on SCIP [4]. Results are shown in table 4.1, where NPC stands for "Number
of Painted Cells".

As shown in table 4.1 the first puzzle was solved almost instantly by both the iterative
implementation and the ILP approach. The brute-force implementation took about 17 minutes
to return the results. With some optimization applied to the brute-force approach, namely by

Table 4.1 Experimental Results (in seconds)

Puzzle R×C×Col NPC Brute-force (Prolog) Brute-force opt (Prolog) Iterative ILP
Fall 10x8x3 47 1,050.70 0.03 0.07 0.03
Fish 16x16x2 164 (too long) 0.08 0.07 0.21
AtoZ 16x16x2 50 (too long) 0.92 0.10 23.04
Time 35x30x5 520 (too long) (out of memory) 0.21 3.51

33
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Table 4.2 Results of adding equation (4.1) to ILP (in seconds)

Puzzle ILP ILP w/ AC
Fall 0.03 0.03
Fish 0.21 0.11
AtoZ 23.04 33.58
Time 3.51 2.45

re-sorting the line tasks, the puzzle is also solved almost instantly. The "Fish" puzzle is a little
harder to solve. The brute-force approach was not able to solve it in a timely fashion although
all other approaches solved it pretty quickly. The other 16x16 puzzle — "AtoZ" — is even
harder to solve. This was the hardest puzzle to solve by the ILP approach. The fourth (and
biggest) puzzle could not be solved by the brute-force algorithms. The iterative approach found
all 14 solutions to the puzzle in less than half a second and the ILP approach took about 3.5
seconds to find the fist one.

In order to try to improve the results of the ILP approach we added equation (4.1) to the set
of constraints, where the right-hand term is a constant.

m∑
i=1

n∑
j=1

zi, j =

m∑
i=1

br
i∑

t=1

sr
i,t × cr

i,t (4.1)

We believed that by adding this constraint, the solver would reach a solution sooner since
the objective value for the problem was already defined (is a constant).

The results are shown in table 4.2, where AC means "Additional Constraint".
Only the performance on the hardest puzzle was not improved which turns out to be incon-

clusive as to the advantages of adding this extra constraint.

4.2 Nonogram Generator

In order to test the different approaches in a proper manner a set of a substantial number of
puzzles with varying dimensions, number of colors and densities should be used. To accomplish
this we decided to create a nonogram puzzle generator.

By developing this generator we also solved the problem of converting the puzzles to the
different file formats supported by each approach.

This generator allows the generation of puzzles based on number of rows, number of columns,
number of colors, global density (amount of painted cells vs. available cells — number of rows
× number of columns) and density by color. The puzzles are generated by painting randomly
chosen cells with specific or randomly chosen colors and then obtaining the clues from the grid.
The generated puzzle can then be saved as a Bosch based file format (adapted for colored nono-
grams), an Olšák file format or a Hett [10] list based Prolog format (also adapted for colored
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nonograms).
Examples of the file formats created by our generator for puzzle shown in figure 4.1 are

shown in appendix B.

Figure 4.1 Generated nonogram

Bosch’s based file format begins with a puzzle definition section where the dimension of
the puzzle and the its number of colors are defined (excluding the background color). we also
added a title field in order to identify the puzzle more easily:

title: TEST_20x20x5_101
number_of_rows: 20
number_of_columns: 20
number_of_colors: 5

After the puzzle definition section follows the clues for the rows. Here, the number of
clusters is defined for each row and after, the blocks’ sizes and colors are defined:

row_1:
number_of_clusters: 3
size(s): 1 1 1
color(s): 1 1 1
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The last section of the file defines the clues for the columns and its format is similar to the
previous one.

In Olšák’s file format all text before "#" or ":" in the first column is ignored. If the puzzle
has colored blocks then we need to write "#D" or "#d" in the first column.

This line denotes the start of the color declaration. The color declaration ends by a ":" in the
first column and the block declarations follow at the next line immediately.

Lines of color declarations have the following format:
<spaces><inchar><colon><outchar><spaces><word_XPM><spaces><comment>
The < spaces> denotes zero or more spaces or tabs. The exception: <word_XPM> has to

be terminated by one or more spaces and/or tabs.
<inchar> is a character used to identify a color in the block declaration section, after the

numbers that represent their sizes. digits, spaces, commas or tab can not be used for <inchar>
declaration. The "0" and "1" are exceptions, see bellow.
<outchar> is a character which will be used to represent that color in the terminal printing

of the solution.
<word_XPM> is the word (without spaces) used in XPM format for color declaration. we

can use the natural word for the color (e.g. blue) or a six hexadecimal digits preceded by a "#"
that represents a RGB color (e.g. "#0000FF"). In order to use a natural word for colors they
have to be defined in the rgb.txt of the X window system where program runs.

If <inchar> is "0", then this line declares the color for the background of the image. If this
declaration is omitted white will be used as the background color.

If <inchar> is "1", then this line declares the "default" color of blocks. This color is used
if no <inchar> follows the block declaration. If this line is omitted then the color must be
specified for each block declaration.

Each block declaration section (one for row and one for columns) begins after a line with a
colon. For every line of the puzzle a sequence of size and color pairs (without spaces separating
the size and the color) separated by spaces or tabs.

Hett’s based file format is defined as a predicate with three arguments: a title and two lists.
Each list defines the list of blocks for rows and columns and is composed of a list of blocks that
can be empty. Each block is another list with two elements: a size and a color.

4.3 Hybrid ILP approach

For the purpose of this work 270 problems were generated divided in three large subsets
of 20×20×5 (number of rows by number of columns with number of colors), 40×60×5 and
100×100×5. Each of these subsets contains 90 problems divided by density (10 of each density
— 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%).

This hybrid ILP solution was tested against pbnsolve — the implementation in C of the
iterative approach by Jan Wolter available in [22]. Due to the poor results shown by the Prolog
implementations by Werner Hett [10] they were removed from this test.
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We imposed a time limit of 15 minutes for solving each of the puzzles in both approaches.
The results were not the ones we expected. The iterative approach is still the fastest to

solve colored nonograms and was the one that solved more nonograms within the 15 minutes
timeframe we imposed. Also, in terms of memory consumption, the iterative approach is better.
Although the save and load times of the .lp files generated from our sample set of nonograms
were not taken into account, some were over 100 MB in size. This means that if these times
were added the results would be worse. Of course, if these times were taken into account we
would be penalizing the ILP model with hard disk access (much slower than memory access).
A solution to this problem would be to completely integrate the hybrid approach, i.e., without
generating any files.

In table 4.3 the number of puzzles solved by each approach and by dimension is shown.
Note that if the puzzle is logically solvable it does not count to either the ILP or the iterative
approaches.

Table 4.3 Number of solved puzzles by method and dimension

100x100 40x60 20x20 Total
Logically solvable 0 4 22 26
Iterative with search 50 61 68 179
ILP 42 5 68 115
Total 92 70 158 320

In table 4.4 the number of puzzles solved by each approach and by puzzle density is shown.
Again, if the puzzle is logically solvable it does not count to any other approach.

Table 4.4 Number of solved puzzles by method and density

10% 20% 30% 40% 50% 60% 70% 80% 90% Total
Logically solvable 1 5 7 13 26
Iterative with search 18 12 10 15 30 29 25 23 17 179
ILP 10 10 10 10 17 19 15 14 10 115
Total 28 22 20 25 47 49 45 44 40 320

Table 4.5 presents the average time each approach took to solve the different puzzle by size.
The values include the logical solving.

Table 4.6 presents the average time each approach took to solve the puzzles by density. This
values include logical solving.

It seems clear that lower density puzzles are harder to solve, specially if their size is large.
In fact, when there are few cells to fill in the grid it becomes harder to logically solve the puzzle.
This means that the puzzle is solved largely by search with backtracking, in case of the iterative
approach, or by applying our ILP model. In either case the process is computationally heavy.
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Table 4.5 Average time to solve a puzzle by dimension

Average of ILP Total Time Average of Iterative Total Time
100x100 39,031728 0,866221
20x20 2,600312 0,004404
40x60 6,886713 0,527231
Total 13,725823 0,380377

Table 4.6 Average time to solve a puzzle by density

Average of ILP Time Average of Iterative Time
10% 0,323448 0,768844
20% 14,997813 0,790693
30% 6,991948 0,011389
40% 0,454907 0,683674
50% 61,614073 1,389269
60% 12,522192 0,056861
70% 9,507734 0,016201
80% 6,576823 0,009129
90% 3,543865 0,004569
Total 13,725823 0,380377

Full results of these tests can be found in table A.1 in appendix A. The times are presented in
seconds and were obtained on a 1.8 GHz Intel© Pentium©M with 1 GB of RAM. The generated
ILP problems were run on SCIP [4].

We could also test our hybrid approach with CPLEX on a 3.0 GHz Intel© Core™Duo ma-
chine with 2 GB of RAM and although we could not analyze them in detail, the results were
significantly better than results we obtained with SCIP. Some puzzles that could not be solved
by SCIP within the 15 minutes window were solved by CPLEX and some puzzles were solved
seven times (and more) faster than with SCIP.



5 . Conclusions and Future Work

In this dissertation we presented a new ILP approach to model the Colored Nonograms
problem, which generalizes a known approach which was limited to black and white Nono-
grams. We demonstrated its correctness and, additionally, we also showed how to efficiently
find possible additional solutions by a simple adaptation of a known technique using a binary
cut, by taking advantage of the specificities of this problem. This work developed during this
Master led to the publication of the article [12].

We also enhanced the aforementioned model by merging it with an iterative approach thus
providing an hybrid approach to colored nonograms.

In order to provide a significant sample set of puzzles, for test and comparisons, we also
developed a nonogram generator. This generator allows us to create puzzles given their width,
height, color count and density (either global or by color) and then to save them in three formats:
Bosch’s variant for colored nonograms, Olšák’s format and a Hett [10] list based Prolog format
variant for colored nonograms.

The hybrid model results were not the ones we expected. The iterative approach is still the
fastest to solve colored nonograms and was the one that solved more nonograms within the 15
minutes timeframe we imposed. Also, in terms of memory consumption, the iterative approach
is better. Some of the .lp files generated from our largest sample nonograms were over 100 MB
in size which is a consequence of the great amount of variables and constraints that consume a
lot of memory.

This also means that maybe there is room for improvement. First by fully integrating the
model in one tool and then by trying to fine tune the model. One example of this can be to
change the objective function and include the objective function value as a constraint and use
CPLEX to verify the results. Specially for the more complex puzzles that were not solved by
either approach, within the 15 minutes window we defined.

Another way the model can be improved is by trying to implement a backtracking mecha-
nism with ILP, i.e, instead of trying to find a final solution with the ILP model, we try to find a
partial solution and then reapply the iterative approach the partial solution.

The model can also be improved in order to solve other problems, like triddlers.
The nonogram puzzle generator developed can also be improved by allowing to take into

account the number of blocks of a puzzle. With the current approach, the puzzles generated
have often a large number of small size blocks.
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B . Nonogram File Formats

B.1 Bosch based file format

title: TEST_20x20x5_101
number_of_rows: 20
number_of_columns: 20
number_of_colors: 5

row_1:
number_of_clusters: 3
size(s): 1 1 1
color(s): 1 1 1

row_2:
number_of_clusters: 1
size(s): 1
color(s): 1

row_3:
number_of_clusters: 3
size(s): 1 3 1
color(s): 1 1 2

row_4:
number_of_clusters: 1
size(s): 1
color(s): 1

row_5:
number_of_clusters: 3
size(s): 1 1 1
color(s): 2 2 2

row_6:
number_of_clusters: 0
size(s):
color(s):

row_7:
53
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number_of_clusters: 0
size(s):
color(s):

row_8:
number_of_clusters: 1
size(s): 1
color(s): 2

row_9:
number_of_clusters: 2
size(s): 1 1
color(s): 3 3

row_10:
number_of_clusters: 0
size(s):
color(s):

row_11:
number_of_clusters: 5
size(s): 1 1 1 1 1
color(s): 3 3 4 3 3

row_12:
number_of_clusters: 3
size(s): 1 1 1
color(s): 3 3 3

row_13:
number_of_clusters: 2
size(s): 1 1
color(s): 4 4

row_14:
number_of_clusters: 2
size(s): 1 1
color(s): 4 4

row_15:
number_of_clusters: 1
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size(s): 1
color(s): 4

row_16:
number_of_clusters: 3
size(s): 1 2 1
color(s): 4 4 1

row_17:
number_of_clusters: 2
size(s): 1 1
color(s): 5 1

row_18:
number_of_clusters: 2
size(s): 1 1
color(s): 5 5

row_19:
number_of_clusters: 2
size(s): 1 1
color(s): 5 5

row_20:
number_of_clusters: 1
size(s): 1
color(s): 5

column_1:
number_of_clusters: 0
size(s):
color(s):

column_2:
number_of_clusters: 1
size(s): 1
color(s): 1

column_3:
number_of_clusters: 0
size(s):
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color(s):

column_4:
number_of_clusters: 1
size(s): 1
color(s): 4

column_5:
number_of_clusters: 3
size(s): 2 1 1
color(s): 3 5 5

column_6:
number_of_clusters: 2
size(s): 1 1
color(s): 2 1

column_7:
number_of_clusters: 2
size(s): 1 1
color(s): 1 3

column_8:
number_of_clusters: 1
size(s): 2
color(s): 3

column_9:
number_of_clusters: 4
size(s): 1 1 1 1
color(s): 1 4 4 5

column_10:
number_of_clusters: 2
size(s): 1 1
color(s): 1 3

column_11:
number_of_clusters: 4
size(s): 1 1 1 1
color(s): 1 2 4 4
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column_12:
number_of_clusters: 2
size(s): 2 1
color(s): 1 3

column_13:
number_of_clusters: 1
size(s): 1
color(s): 1

column_14:
number_of_clusters: 1
size(s): 1
color(s): 4

column_15:
number_of_clusters: 5
size(s): 1 1 1 2 1
color(s): 1 3 3 4 4

column_16:
number_of_clusters: 2
size(s): 1 1
color(s): 2 5

column_17:
number_of_clusters: 1
size(s): 1
color(s): 5

column_18:
number_of_clusters: 1
size(s): 1
color(s): 2

column_19:
number_of_clusters: 3
size(s): 1 1 1
color(s): 2 1 5
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column_20:
number_of_clusters: 0
size(s):
color(s):

B.2 Olšák file format

Title: TEST_20x20x5_101
#d
a:a 1
b:b 2
c:c 3
d:d 4
e:e 5

: rows
1a 1a 1a
1a
1a 3a 1b
1a
1b 1b 1b

1b
1c 1c

1c 1c 1d 1c 1c
1c 1c 1c
1d 1d
1d 1d
1d
1d 2d 1a
1e 1a
1e 1e
1e 1e
1e
: columns

1a

1d



59

2c 1e 1e
1b 1a
1a 1c
2c
1a 1d 1d 1e
1a 1c
1a 1b 1d 1d
2a 1c
1a
1d
1a 1c 1c 2d 1d
1b 1e
1e
1b
1b 1a 1e

: end

B.3 Hett based file format

specimen_nonogram(’TEST_20x20x5_101’,
[[[1,1],[1,1],[1,1]]
[[1,1]]
[[1,1],[3,1],[1,2]]
[[1,1]]
[[1,2],[1,2],[1,2]]
[]
[]
[[1,2]]
[[1,3],[1,3]]
[]
[[1,3],[1,3],[1,4],[1,3],[1,3]]
[[1,3],[1,3],[1,3]]
[[1,4],[1,4]]
[[1,4],[1,4]]
[[1,4]]
[[1,4],[2,4],[1,1]]
[[1,5],[1,1]]
[[1,5],[1,5]]
[[1,5],[1,5]]
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[[1,5]]
],
[[]
[[1,1]]
[]
[[1,4]]
[[2,3],[1,5],[1,5]]
[[1,2],[1,1]]
[[1,1],[1,3]]
[[2,3]]
[[1,1],[1,4],[1,4],[1,5]]
[[1,1],[1,3]]
[[1,1],[1,2],[1,4],[1,4]]
[[2,1],[1,3]]
[[1,1]]
[[1,4]]
[[1,1],[1,3],[1,3],[2,4],[1,4]]
[[1,2],[1,5]]
[[1,5]]
[[1,2]]
[[1,2],[1,1],[1,5]]
[]
]
).
--------------------------------
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